首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesize that algae with different cell compositions are differently perceived by their predators and consequently subjected to selective grazing. Five populations of the diatom Phaeodactylum tricornutum that differed in organic and elemental composition, but were otherwise identical, were generated by acclimation to distinct growth regimes. The different populations were then mixed in pairs and subjected to predation by either the rotifer Brachionus plicatilis or the copepod Acartia tonsa. The presence of rotifers had no impact on the ratio between any two algal populations. The presence of copepods, however, affected the ratio between algae previously acclimated to a medium containing 1 mM NH4+ and algae acclimated to 0.5 mM NO3?, and to either a lower irradiance or a higher CO2 concentration. We discuss the possible reason for the influence of different nutritional histories on the vulnerability of algae to predators. The differential impact of grazers on the growth of algae with different nutritional histories may result from direct selective grazing (i.e., grazers can detect algae with the most palatable cell composition), alone or combined to an asymmetric utilization of the nutrients regenerated after predation by co‐existing algal populations. Our results strongly suggest that the nutritional history of algae can influence the relationships between phytoplankton and grazers and hint at the possibility that algal cell composition is potentially subject to natural selection, because it influences the probability that algae survive predation.  相似文献   

2.
Cell viabilities of phytoplankton in the Oyashio and Kuroshio-Oyashio transition regions of the northwest Pacific Ocean were examined in September 2003 (late summer) and May 2005 (spring) using a membrane permeability test. Specific lysis rates of the phytoplankton during late summer were also assessed by an esterase activity assay. In late summer, cyanobacteria Synechococcus spp. were > 2 × 104 cells ml− 1 and numerically dominated the phytoplankton communities. The cell viabilities of Synechococcus spp. and eukaryotic ultraphytoplankton (< 10 μm in size) were 60-79% and 26-41% in surface waters, respectively. The specific lysis rates of the phytoplankton were 0.12-0.67 d− 1 in late summer. By contrast, in spring, eukaryotic cells were predominant in the phytoplankton communities. The cell viabilities of surface eukaryotic ultraphytoplankton in spring were > 70% and significantly higher than those in late summer. During spring, Synechococcus spp. only occurred with < 1 × 104 cells ml− 1 in the Kuroshio-Oyashio transition region, and their viabilities were 80%. In the Oyashio region where a spring diatom bloom developed, the viability of fucoxanthin-containing algae (mainly diatoms and prymnesiophytes) was ca. 90%. These results suggested that the cell viability of phytoplankton could vary seasonally with their community structure in the study area. The phytoplankton cell death in late summer was particularly significant for their loss process and could support the microbial food webs by supplying dissolved organic carbon (DOC) derived from the dead cells.  相似文献   

3.
Ratti S  Knoll AH  Giordano M 《Geobiology》2011,9(4):301-312
During the Mesozoic Era, dinoflagellates, coccolithophorids and diatoms became prominent primary producers in the oceans, succeeding an earlier biota in which green algae and cyanobacteria had been proportionally more abundant. This transition occurred during an interval marked by increased sulfate concentration in seawater. To test whether increasing sulfate availability facilitated the evolutionary transition in marine phytoplankton, the cyanobacterium Synechococcus sp., the green alga Tetraselmis suecica and three algae containing chlorophyll a+c (the diatom Thalassiosira weissflogii, the dinoflagellate Protoceratium reticulatum and the coccolithophorid Emiliania huxleyi) were grown in media containing 1, 5, 10, 20, or 30 mm SO(4) (2-) . The cyanobacterium and the green alga showed no growth response to varying [SO(4) (2-) ]. By contrast, the three chlorophyll a+c algae showed improved growth with higher [SO(4) (2-) ], but only up to 10 mm. The chlorophyll a+c algae, but not the green alga or cyanobacterium, also showed lower C:S with higher [SO(4) (2-) ]. When the same experiment was repeated in the presence of a ciliate predator (Euplotes sp.), T. suecica and T. weissflogii increased their specific growth rate in most treatments, whereas the growth rate of Synechococcus sp. was not affected or decreased in the presence of grazers. In a third experiment, T. suecica, T. weissflogii, P. reticulatum and Synechococcus sp. were grown in conditions approximating modern, earlier Paleozoic and Proterozoic seawater. In these treatments, sulfate availability, nitrogen source, metal availability and Pco(2) varied. Monospecific cultures exhibited their highest growth rates in the Proterozoic treatment. In mixed culture, T. weissflogii outgrew other species in modern seawater and T.suecica outgrew the others in Paleozoic water. Synechococcus sp. grew best in Proterozoic seawater, but did not outgrow eukaryotic species in any treatment. Collectively, our results suggest that secular increase in seawater [SO(4) (2-) ] may have facilitated the evolutionary expansion of chlorophyll a+c phytoplankton, but probably not to the exclusion of other biological and environmental factors.  相似文献   

4.
There is a growing understanding that phagotrophic ciliates are often important members of aquatic communities in terms of their trophic role and mobilization of small cell production to higher consumers. As formidable consumers of small phytoplankton species they are likely to be also important in determining the community composition of the pico‐ and nanophytoplankton assemblages. Dilution method experiments were conducted during the winter and summer in the South Slough, an arm of the Coos Bay on the southern Oregon coast, to assess the impact of ciliate grazing on two size fractions of chlorophyll (0.2 to 5 mm and> 5 mm) and on the growth and abundance of specific phytoplankton groups, particularly cryptophytes and Synechococcus sp. The premise of the dilution technique is that grazers are diluted with their food and the observed rate of change in chlorophyll or phytoplankton abundance is linearly related to the dilution factor. Results from previous studies using the dilution technique have been given in terms of the grazing impact of microzooplankton on total chlorophyll. The findings of the research presented using a more rigorous application of the dilution method suggest that ciliates are differential in their grazing of phytoplankton, targeting small phytoplankton biomass and preying selectively on components of the assemblage that constitute this biomass.  相似文献   

5.
Feeding activity, selective grazing and the potential grazing impact of two dominant grazers of the Polar Frontal Zone, Calanus simillimus and Rhincalanus gigas, and of copepods < 2 mm were investigated with incubation experiments in the course of an iron fertilized diatom bloom in November 2000. All grazers were already actively feeding in the low chlorophyll waters prior to the onset of the bloom. C. simillimus maintained constant clearance rates and fed predominantly on diatoms. R. gigas and the small copepods strongly increased clearance and ingestion of diatoms in response to their enhanced availability. All grazers preyed on microzooplankton, most steadily on ciliates, confirming the view that pure herbivory appears to be the exception rather than the rule in copepod feeding. The grazers exhibited differences in feeding behavior based on selectivity indices. C. simillimus and R. gigas showed prey switching from dinoflagellates to diatoms in response to the phytoplankton bloom. All grazers most efficiently grazed on large diatoms leading to differences in daily losses for large and small species, e.g. Corethron sp. or Thalassionema nitzschioides. Species-specific diatom mortality rates due to grazing suggest that the high feeding activity of C. simillimus prior to and during the bloom played a role in shaping diatom population dynamics.  相似文献   

6.
Studies of predator–prey systems in both aquatic and terrestrial environments have shown that grazers structure the intraspecific diversity of prey species, given that the prey populations are phenotypically variable. Populations of phytoplankton have traditionally considered comprising only low intraspecific variation, hence selective grazing as a potentially structuring factor of both genetic and phenotypic diversity has not been comprehensively studied. In this study, we compared strain specific growth rates, production of polyunsaturated aldehydes, and chain length of the marine diatom Skeletonema marinoi in both grazer and non-grazer conditions by conducting monoclonal experiments. Additionally, a mesocosm experiment was performed with multiclonal experimental S. marinoi populations exposed to grazers at different levels of copepod concentration to test effects of grazer presence on diatom diversity in close to natural conditions. Our results show that distinct genotypes of a geographically restricted population exhibit variable phenotypic traits relevant to grazing interactions such as chain length and growth rates. Grazer presence affected clonal richness and evenness of multiclonal Skeletonema populations in the mesocosms, likely in conjunction with intrinsic interactions among the diatom strains. Only the production of polyunsaturated aldehydes was not affected by grazer presence. Our findings suggest that grazing can be an important factor structuring diatom population diversity in the sea and emphasize the importance of considering clonal differences when characterizing species and their role in nature.  相似文献   

7.
Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways.  相似文献   

8.
We report the results of simple experiments which support the hypothesis that changes in ocean chemistry beginning in the Mesozoic Era resulted in an increase in the nutritional quality per mole of C and per cell of planktonic algal biomass compared to earlier phytoplankton. We cultured a cyanobacterium, a diatom, a dinoflagellate, and a green alga in media mimicking aspects of the chemistry of Palaeozoic and Mesozoic‐Cenozoic oceans. Substantial differences emerged in the quality of algal biomass between the Palaeozoic and Mesozoic‐Cenozoic growth regimes; these differences were strongly affected by interspecific interactions (i.e., the co‐existence of different species alters responses to the chemistry of the medium). The change was in the direction of a Mesozoic‐Cenozoic biomass enriched in protein per mole C, although cells contained less carbon overall. This would lead to a lower C:N ratio. On the assumption that Mesozoic‐Cenozoic grazers’ assimilation of total C was similar to that of their earlier counterparts, their diet would be stoichiometrically closer to their C:N requirement. This, along with an increase in mean cell size among continental shelf phytoplankton, could have helped to facilitate observed evolutionary changes in the Mesozoic marine fauna. In turn, increased grazing pressure would have operated as a selective force for the radiation of phytoplankton clades better equipped with antigrazing capabilities (sensu lato), as found widely in phytoplankton with biomineralization. Our results emphasize potential links between changing seawater chemistry, increased predation pressure and the rise to ecological dominance of chlorophyll a+c algae in Mesozoic oceans. The experiments also suggest a potential role for ocean chemistry in changes of marine trophic structure from the Palaeozoic to the later Mesozoic Era.  相似文献   

9.
In the Laurentian Great Lakes, phytoplankton growth and biomass are secondarily limited by silica (Si), as a result of phosphorus (P) enrichment. Even modest levels of P enrichment can induce secondary Silimitation, which, in turn, promotes a shift from the native diatom phytoplankton flora to chlorophyte and cyanobacteria species. However, very little is known about the nutritional status of benthic populations and their response to nutrient enrichment. Two experiments were performed in the littoral zone of Lake Michigan where nutrients were delivered to in situ benthic algal (episammic and epilithic) assemblages using nutrient‐diffusing substrata. In order to test the hypothesis that benthic algae in Lake Michigan are Si limited, a 2 × 3 factorial experiment was used to deliver all combinations of Si, N, and P to resident assemblages growing on artificial substrata composed of natural (Si rich) versus calcium carbonate (Si poor) sand. A second experiment utilized a serial enrichment to evaluate the role of Si in mediating changes in taxonomic composition. These findings indicate that benthic algae in Lake Michigan exhibit signs of secondary Si limitation, and that their response to enrichment is similar to the phytoplankton. Moreover, natural sand substrata may provide a source of Si to resident benthic algae.  相似文献   

10.
We used an indirect immunofluorescence technique to permit the identification and enumeration of individual or closely related strains of chroococcoid cyanobacteria of the general Synechococcus and Synechocystis in natural seawater samples. Antisera directed against each of five strains (two phycoerythrin-containing Synechococcus strains, two phycocyanin-containing Synechococcus strains, and one Synechocystis strain) were produced and tested for cross-reactions with cultures of a variety of cyanobacteria and representatives of other algae and bacteria. Each antiserum was relatively specific. The observed cross-reactions occurred between strains that were isolated from similar oceanic environments. We were able, therefore, to apply this technique to field samples. Preliminary results for April to December 1982 in Great South Bay, New York, show that Synechocystis populations are present only during spring and summer, phycocyanin-containing Synechococcus strains are only a minor component in the spring and summer, and phycoerythrin-containing Synechococcus populations become significant in summer and remain so until late fall or winter.  相似文献   

11.
Experiments were done with two strain of filamentous, mat-forming Phormidium and their ciliate grazer Pseudomicrothorax dubius, to explain why the ciliates remain hungry in an apparent surplus of food, except for the first 24 hours after feeding. Under grazing pressure, both strains of cyanobacteria showed statistically significant increases in the number of filaments terminating in an empty sheath, compared to the control. Direct observations revealed that the mechanism behind this effect was active withdrawal of the trichomes inside the sheaths when disturbed by grazers. As P. dubius is unable to ingest trichomes with such endings, we conclude that cyanobacteria are not limited to chemical means of defence against grazers but can also defend themselves by means of movement and changes in filament morphology. This is apparently the first report on behavioural defence observed in cyanobacteria.  相似文献   

12.
Small, aloricate ciliates dominated the biomass of heterotrophicprotists throughout the water column at the end of the periodof stratification in Lake Kinneret, Israel The integrated biomassof cilates was 5–20 times that of heterotrophic flagellatesDuring incubation experiments, ciliate growth rates in cpilimneticwater corresponded to population doubling times of 9.6–19.4h, while flagellate populations showed no growth. Most of thealiates were small forms (10–30 µm long), includingscuticocihates, choreotnchs, Coleps spp. and Colpoda spp., andappeared to be consuming bacteria, coccoid cyanobacteria, and<5 µm eukaryotic algae. Grazing rates of cihate assemblageson picoplankton in the epilimnion, as determined by the uptakeof fluorescently labeled bacteria and cyanobactena, ranged from62 to 86 nl cell1 h1 Colpoda steini, isolatedfrom lakewater, grew on a cultured freshwater Synechococcussp with a doubling time of 4.5 h, and a gross growth efficiencyof 48% The estimated daily requirements of ciliates for growthapproximately equalled total phytoplankton production. We calculatedthat ciliates in the epilimnion were clearing 4–10% ofthe bacterioplankton and cyanobactenal standing stocks per daySince this would not be sufficient food consumption to meetdaily carbon requirements of the aliates, it is likely thatthese organisms were also grazing a significant amount of autotrophicand heterotrophic eukaryotic cells in Lake Kinneret.  相似文献   

13.
Cyanobacterin LU-1, produced by Nostoc linckia CALU 892, inhibits the growth of many cyanobacteria and eukaryotic algae. The minimum effective dose of a crude preparation to Synechococcus sp. R-2 is ca 1 µg ml?1. The antibiotic hinders cell division and light-dependent oxygen evolution in Synechococcus sp. R-2 (PCC 7942) cells. It is not active against heterotrophic bacteria and fungi, and is non-toxic to mice. Purified cyanobacterin LU-1 contains a nitrous heterocycle with sugar and phenolic substituents. Cyanobacterin LU-1 accumulates in the medium during the course of growth, although not in direct proportion to cell density. Productivity of the culture depends on temperature.  相似文献   

14.
An enclosure experiment was conducted to assess the effects of a zooplankton elimination on the structure of a phytoplankton community. Phytoplankton biomass and production were higher in grazer-free enclosures, while the productivity per unit biovolume was lower. Exclusion of zooplankton favoured the majority of algal species, especially chrysophyceans (Dinobryon spp.) and the diatom Rhizosolenia, while mucilagineous green-algae were disfavoured. Middle sized algae (ESD 15–50 µm) and those with the largest Surface Area/Volume ratio were proportionally most favoured by the elimination of grazers.These differences in phytoplankton community structure are discussed in relation to effects of direct selective grazing and nutrient recycling by zooplankton. Some differences, as the immediate positive response of Dinobryon and Rhizosolenia, are probably caused by grazing release, while others, e.g. the response of mucilagineous species, might be caused by changed competitive relationships between the algae.  相似文献   

15.
Phytoplankton growth is a physiological process often limitedby temperature, nutrients or light, while biomass accumulationis a function of growth rates, grazing and deposition. Althoughprimary productivity measurements are usually used to assessresponses to limiting factors, the rates are proportional tobiomass and inversely related to grazing pressure during experimentalincubations. Alternatively, carbon-specific growth-rate determinationsprovide insights into physiological responses without the confoundingeffects of biomass and grazing. The objective of this studywas to quantify the growth-rate responses of phytoplankton toenhanced nutrient availability (nitrate and phosphate) overa range of in situ irradiances. Growth rates were determinedbased on chlorophyll a-specific 14C-uptake rates by phytoplankton.Phytoplankton demonstrated high (24 h) growth rates when exposedto increased concentrations of limiting nutrients, independentof the surface irradiances (12–41%). Growth-rate responseswere also compared with the biomass (chlorophyll a) responsesand community composition. Observed and estimated phytoplanktonbiomass changes during the incubations differed, emphasizingthe structural role of grazers on the phytoplankton community.The phytoplankton community in Galveston Bay has the potentialto instantaneously respond to nutrient pulses, facilitatingdiatom biomass accumulations in spring and summer and small,flagellated species and cyanobacteria during periods of lownutrient inputs. Thus, Galveston Bay phytoplankton biomass andcommunity composition reflect a dynamic balance between thefrequency of nutrient pulsing and grazing intensity.  相似文献   

16.
In situ phytoplankton microcosms were developed and characterized for use in toxicity testing. The microcosms contained 225 μm filtered seawater maintained in 1 liter glass bottles attached to a plastic frame and immersed at 3 m under the sea surface. Synechococcus and picoeukaryote population dynamics in microcosms and the surrounding water were compared. A bloom-like behaviour observed for Synechococcus in these phytoplankton microcosms was avoided when 10% of the culture volume was replaced, every two days, by filtered seawater. After 2 weeks, no significant difference in Synechococcus and picoeukaryotes cell counts was observed in microcosms compared to the surrounding free seawater. Synechococcus fluorescence at 545 nm (phycoerythrobilin) fluctuated with a similar pattern in such microcosms and in free seawater and were shown to be correlated to light intensity fluctuations over a two week experiment. The in situ microcosms were used to study the impact of low copper additions. Synechococcus populations were dramatically decreased by copper addition, while picoeukaryote populations were increased simultaneously. Our data show that drastic changes in species composition can occur at copper concentrations encountered in polluted coastal areas.  相似文献   

17.
Microzooplankton grazing can have significant impacts on the distribution and abundance of phytoplankton, thereby influencing the frequency and duration of algae blooms. Observations of high ciliate abundances in the Suwannee River estuary, Florida, suggest a significant potential for top-down pressure on the phytoplankton community by microzooplankton. We examined the composition of the microzooplankton and determined grazing mortality losses for phytoplankton within the Suwannee River estuary from 2001 to 2002. Our results indicated grazing mortality rates of 1.4 d−1, equivalent to a loss of up to 76% of phytoplankton standing crop and up to 83% of total daily primary production. The microzooplankton community was primarily composed of ciliates, dinoflagellates, and copepod nauplii. The densities of ciliates in the estuary were comparable to densities reported in highly eutrophic ecosystems (9,400–72,800 ciliates l−1). Grazing pressure on small phytoplankton may be further enhanced because ciliates and small dinoflagellates have growth rates similar to those of phytoplankton, and therefore can keep up with surges in abundance. Handling editor: Judit Padisak  相似文献   

18.
Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans.  相似文献   

19.
1. In situ enclosure experiments were performed in the mesotrophic Bermejales reservoir to evaluate the algal response to changes in the nutrient supply and in the zooplankton size structure and density in a 2 × 2 factorial design. The experiments were conducted during the spring bloom of nanoplanktonic diatoms in 1989. 2. Nutrient enrichment promoted a great increase of phytoplankton biomass indicating a strong nutrient limitation on phytoplankton growth. Total phytoplankton biomass was significantly lower in the Daphina-added enclosures at a given nutrient level and strong direct an indirect effect of zooplankton on phytoplankton community structure and nutrient availability were observed. 3. Most of the nanoplanktonic species were effectively grazed but species with protective coverings and large size colonies were favoured by grazers and small chlorococcales were unaffected probably because of their compensatory high growth rates. The decrease in total biomass imposed by grazers is attributable mainly to the decrease of Cyclotella ocellata, the most abundant species. This taxon suffers two net effects of zooplankton: direct grazing and the indirect decrease of Si availability caused by the growth of C. ocellata which was promoted by P excretion by zooplankton. Indirect effects of grazers on Si availability should, therefore, be taken into account in explaining phytoplankton succession and community structure. 4. In this experiment grazers affected considerably the nanoplanktonic community in Bermejales reservoir. The extent which they were affected, however, depended not only on the algal size as a determinant of edibility but also greatly on the specific nutrient requirements and taxonomic features of the algal species.  相似文献   

20.
The abundance, growth, and grazing loss rates of picophytoplankton were investigated in August 2002 in Barguzin Bay, Lake Baikal. Water samples for incubation were taken once at a near-shore station and twice at an offshore station. Contributions of picophytoplankton to total phytoplankton were high (56.9–83.9%) at the offshore station and low (5.8–6.8%) at the near-shore station. The picophytoplankton community in the offshore station comprised mainly phycoerythrin (PE)-rich cyanobacteria, with eukaryotic picophytoplankton being less abundant. In contrast, as well as PE-rich cyanobacteria and eukaryotic picophytoplankton, phycocyanin (PC)-rich cyanobacteria were found in the near-shore station. At the offshore station, growth and grazing loss rates on 25 August were 0.56 and 0.43 day−1, respectively, and on 29 August, 0.69 and 0.83 day−1, respectively. At the near-shore station, growth and grazing loss rates were 1.61 and 0.70 day−1, respectively. These results show that there is a difference in the abundance, composition, and ecological role in the microbial food web of picophytoplankton between the near-shore and the offshore areas in Barguzin Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号