首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Buoyant density gradient centrifugation has been used to separate bacteria from complex food matrices, as well as to remove compounds that inhibit rapid detection methods, such as PCR, and to prevent false-positive results due to DNA originating from dead cells. Applying a principle of buoyant density gradient centrifugation, we developed a method for rapid separation and concentration following filtration and low- and high-speed centrifugation, as well as flotation and sedimentation buoyant density centrifugation, for 12 food-borne pathogens (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, Campylobacter jejuni, Vibrio cholerae O139, Vibrio parahaemolyticus O3K6, Vibrio vulnificus, Providencia alcalifaciens, Aeromonas hydrophila, Bacillus cereus, Staphylococcus aureus, and Clostridium perfringens) in 13 different food homogenates. This method can be used prior to real-time quantitative PCR (RTi-qPCR) and viable-cell counting. Using this combined method, the target organisms in the food samples theoretically could be concentrated 250-fold and detected at cell concentrations as low as 101 to 103 CFU/g using the RTi-qPCR assay, and amounts as small as 100 to 101 CFU/g could be isolated using plate counting. The combined separation and concentration methods and RTi-qPCR confirmed within 3 h the presence of 101 to 102 CFU/g of Salmonella and C. jejuni directly in naturally contaminated chicken and the presence of S. aureus directly in remaining food items in a poisoning outbreak. These results illustrated the feasibility of using these assays for rapid inspection of bacterial food contamination during a real-world outbreak.  相似文献   

2.
A study of basal media identified Campylobacter enrichment broth, with (CEB+) and without (CEB) antibiotic supplement, as a suitable medium for the detection and enumeration of Campylobacter jejuni, C. coli and C. lari within aqueous samples via conductance methodology. Despite apparent differences in conductivity profiles between species in the presence of antibiotics, no significant differences (P<0.05) were detected between detection times for each species tested. CEB+ was successfully employed within a combined enrichment and conductance protocol to the detection of C. jejuni from river water at a concentration of 1 CFU ml−1 from 83% of samples in under 39 h and thus demonstrated an improvement over an applied conventional membrane filtration technique.  相似文献   

3.
A new two-step filtration protocol followed by a real-time PCR assay based on SYBR green I detection was developed to directly quantitate salmonellae in two types of biological samples: i.e., chicken rinse and spent irrigation water. Four prefiltration filters, one type of final filter, and six protocols for recovery of salmonellae from the final filter were evaluated to identify an effective filtration protocol. This method was then combined with a real-time PCR assay based on detection of the invA gene. The best results were obtained by subsequent filtration of 100 ml of chicken rinse or 100 ml of spent irrigation water through filters with pore diameters of >40 μm to remove large particles and of 0.22 μm to recover the Salmonella cells. After this, the Salmonella cells were removed from the filter by vortexing in 1 ml of physiological saline, and this sample was then subjected to real-time quantitative PCR. The whole procedure could be completed within 3 h from sampling to quantitation, and cell numbers as low as 7.5 × 102 CFU per 100-ml sample could be quantified. Below this limit, qualitative detection of concentrations as low as 2.2 CFU/100 ml sample was possible on occasion. This study has contributed to the development of a simple, rapid, and reliable method for quantitation of salmonellae in food without the need for sample enrichment or DNA extraction.  相似文献   

4.
The multianalyte array biosensor (MAAB) is a rapid analysis instrument capable of detecting multiple analytes simultaneously. Rapid (15-min), single-analyte sandwich immunoassays were developed for the detection of Salmonella enterica serovar Typhimurium, with a detection limit of 8 × 104 CFU/ml; the limit of detection was improved 10-fold by lengthening the assay protocol to 1 h. S. enterica serovar Typhimurium was also detected in the following spiked foodstuffs, with minimal sample preparation: sausage, cantaloupe, whole liquid egg, alfalfa sprouts, and chicken carcass rinse. Cross-reactivity tests were performed with Escherichia coli and Campylobacter jejuni. To determine whether the MAAB has potential as a screening tool for the diagnosis of asymptomatic Salmonella infection of poultry, chicken excretal samples from a private, noncommercial farm and from university poultry facilities were tested. While the private farm excreta gave rise to signals significantly above the buffer blanks, none of the university samples tested positive for S. enterica serovar Typhimurium without spiking; dose-response curves of spiked excretal samples from university-raised poultry gave limits of detection of 8 × 103 CFU/g.  相似文献   

5.
Diagnostic Real-Time PCR for Detection of Salmonella in Food   总被引:5,自引:0,他引:5       下载免费PDF全文
A robust 5′ nuclease (TaqMan) real-time PCR was developed and validated in-house for the specific detection of Salmonella in food. The assay used specifically designed primers and a probe target within the ttrRSBCA locus, which is located near the Salmonella pathogenicity island 2 at centisome 30.5. It is required for tetrathionate respiration in Salmonella. The assay correctly identified all 110 Salmonella strains and 87 non-Salmonella strains tested. An internal amplification control, which is coamplified with the same primers as the Salmonella DNA, was also included in the assay. The detection probabilities were 70% when a Salmonella cell suspension containing 103 CFU/ml was used as a template in the PCR (5 CFU per reaction) and 100% when a suspension of 104 CFU/ml was used. A pre-PCR sample preparation protocol including a preenrichment step in buffered peptone water followed by DNA extraction-purification was applied when 110 various food samples (chicken rinses, minced meat, fish, and raw milk) were investigated for Salmonella. The diagnostic accuracy was shown to be 100% compared to the traditional culture method. The overall analysis time of the PCR method was approximately 24 h, in contrast to 4 to 5 days of analysis time for the traditional culture method. This methodology can contribute to meeting the increasing demand of quality assurance laboratories for standard diagnostic methods. Studies are planned to assess the interlaboratory performance of this diagnostic PCR method.  相似文献   

6.
Campylobacter jejuni is prevalent in poultry, but the effect of combined refrigerated and frozen storage on its survival, conditions relevant to poultry processing and storage, has not been evaluated. Therefore, the effects of refrigeration at 4°C, freezing at −20°C, and a combination of refrigeration and freezing on the survival of C. jejuni in ground chicken and on chicken skin were examined. Samples were enumerated using tryptic soy agar containing sheep's blood and modified cefoperazone charcoal deoxycholate agar. Refrigerated storage alone for 3 to 7 days produced a reduction in cell counts of 0.34 to 0.81 log10 CFU/g in ground chicken and a reduction in cell counts of 0.31 to 0.63 log10 CFU/g on chicken skin. Declines were comparable for each sample type using either plating medium. Frozen storage, alone and with prerefrigeration, produced a reduction in cell counts of 0.56 to 1.57 log10 CFU/g in ground chicken and a reduction in cell counts of 1.38 to 3.39 log10 CFU/g on chicken skin over a 2-week period. The recovery of C. jejuni following freezing was similar on both plating media. The survival following frozen storage was greater in ground chicken than on chicken skin with or without prerefrigeration. Cell counts after freezing were lower on chicken skin samples that had been prerefrigerated for 7 days than in those that had been prerefrigerated for 0, 1, or 3 days. This was not observed for ground chicken samples, possibly due to their composition. C. jejuni survived storage at 4 and −20°C with either sample type. This study indicates that, individually or in combination, refrigeration and freezing are not a substitute for safe handling and proper cooking of poultry.  相似文献   

7.
Buoyant density gradient centrifugation has been used to separate bacteria from complex food matrices, as well as to remove compounds that inhibit rapid detection methods, such as PCR, and to prevent false-positive results due to DNA originating from dead cells. Applying a principle of buoyant density gradient centrifugation, we developed a method for rapid separation and concentration following filtration and low- and high-speed centrifugation, as well as flotation and sedimentation buoyant density centrifugation, for 12 food-borne pathogens (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, Campylobacter jejuni, Vibrio cholerae O139, Vibrio parahaemolyticus O3K6, Vibrio vulnificus, Providencia alcalifaciens, Aeromonas hydrophila, Bacillus cereus, Staphylococcus aureus, and Clostridium perfringens) in 13 different food homogenates. This method can be used prior to real-time quantitative PCR (RTi-qPCR) and viable-cell counting. Using this combined method, the target organisms in the food samples theoretically could be concentrated 250-fold and detected at cell concentrations as low as 10(1) to 10(3) CFU/g using the RTi-qPCR assay, and amounts as small as 10(0) to 10(1) CFU/g could be isolated using plate counting. The combined separation and concentration methods and RTi-qPCR confirmed within 3 h the presence of 10(1) to 10(2) CFU/g of Salmonella and C. jejuni directly in naturally contaminated chicken and the presence of S. aureus directly in remaining food items in a poisoning outbreak. These results illustrated the feasibility of using these assays for rapid inspection of bacterial food contamination during a real-world outbreak.  相似文献   

8.
A novel, cost-effective method of lysozyme separation from hen egg white was studied. This method integrates aqueous two-phase partitioning in the system EO50PO50/phosphates with membrane separation processes. The experiments were carried out in a pilot-scale on crude hen egg white.Initially, by forming an aqueous two-phase system, lysozyme was selectively extracted to the upper, polymer-rich phase while the other egg white proteins partitioned to the lower, phosphate-rich phase. Then, in order to recover lysozyme, thermoseparation of polymer-rich phase was applied. A novel approach for the simultaneous thermoseparation of the polymer-rich phase as well as for the recovery of the lysozyme was proposed, using a cross-flow microfiltration. Additionally, recovery of proteins by ultrafiltration from lower, phosphate-rich phase was also investigated.Lysozyme could be obtained after the thermal phase separation by means of microfiltration at a total recovery over the extraction steps of 47.5 and the purification factor of 10.5. The specific activity of lysozyme preparations was 34 188 U/mg of protein. Using cross-flow membrane techniques, it was found that the recovery of the polymer by microfiltration from the top phase was 83.9.  相似文献   

9.
A simple method has been developed for the analysis of aerobic bacteria in complex samples such as broth and food homogenates. It employs commercial phosphorescent oxygen-sensitive probes to monitor oxygen consumption of samples containing bacteria using standard microtiter plates and fluorescence plate readers. As bacteria grow in aqueous medium, at certain points they begin to deplete dissolved oxygen, which is seen as an increase in probe fluorescence above baseline signal. The time required to reach threshold signal is used to either enumerate bacteria based on a predetermined calibration or to assess the effects of various effectors on the growth of test bacteria by comparison with an untreated control. This method allows for the sensitive (down to a single cell), rapid (0.5 to 12 h) enumeration of aerobic bacteria without the need to conduct lengthy (48 to 72 h) and tedious colony counts on agar plates. It also allows for screening a wide range of chemical and environmental samples for their toxicity. These assays have been validated with different bacteria, including Escherichia coli, Micrococcus luteus, and Pseudomonas fluorescens, with the enumeration of total viable counts in broth and industrial food samples (packaged ham, chicken, and mince meat), and comparison with established agar plating and optical-density-at-600-nm assays has been given.  相似文献   

10.
The use of DNA probes for Shiga-like toxin I (SLT-I) and SLT-II for detection of SLT-producing Escherichia coli (SLTEC) in foods and calf fecal samples was evaluated. Enrichment cultures were prepared from food or fecal samples. Colonies formed by plating of enrichment cultures were probed for SLTEC by colony hybridization. Alternatively, enrichment cultures were analyzed for SLTEC presence by dot blot. The lowest detected concentration of SLTEC in sample homogenates inoculated with E. coli O157:H7 corresponded to 1.3 CFU/g of sample. Of the 44 food samples and 28 fecal samples from dairy calves tested by the colony hybridization method, 4 food samples, including ground beef, raw goat milk, blueberries, and surimi-based delicatessen salad, and 9 calf fecal samples were positive with the SLT probes. The dot blot technique yielded results within 48 h and can be used as a fast and sensitive method of detection for SLTEC in foods and calf fecal samples. The colony hybridization technique took 3 to 4 days but permits recovery of the positive colonies when desired.  相似文献   

11.
The use of DNA probes for Shiga-like toxin I (SLT-I) and SLT-II for detection of SLT-producing Escherichia coli (SLTEC) in foods and calf fecal samples was evaluated. Enrichment cultures were prepared from food or fecal samples. Colonies formed by plating of enrichment cultures were probed for SLTEC by colony hybridization. Alternatively, enrichment cultures were analyzed for SLTEC presence by dot blot. The lowest detected concentration of SLTEC in sample homogenates inoculated with E. coli O157:H7 corresponded to 1.3 CFU/g of sample. Of the 44 food samples and 28 fecal samples from dairy calves tested by the colony hybridization method, 4 food samples, including ground beef, raw goat milk, blueberries, and surimi-based delicatessen salad, and 9 calf fecal samples were positive with the SLT probes. The dot blot technique yielded results within 48 h and can be used as a fast and sensitive method of detection for SLTEC in foods and calf fecal samples. The colony hybridization technique took 3 to 4 days but permits recovery of the positive colonies when desired.  相似文献   

12.
A study of six child care centers was conducted to assess the microbiological quality of three food contact surfaces (one food serving surface and two food preparation surfaces) and one non-food contact surface (diaper changing surface) to determine the effectiveness of cleaning and sanitization procedures within the facilities. Aerobic plate counts (APCs) and Escherichia coli/coliform counts of 50-cm2 areas on all surfaces were determined using standard microbiological swabbing methods. Samples were taken three times a day (preopening, lunchtime, and following final cleanup) twice per month for 8 months in each child care center (n = 288 sampling times). Mean log APCs over the survey period were 1.32, 1.71, 1.34, 1.96, 1.50, and 1.81 log CFU/50 cm2 for the six centers. Mean log coliform counts were 0.15, 0.40, 0.33, 1.41, 0.28, and 1.12 CFU/50 cm2 for the same centers. Coliforms were detected in 283 of 1,149 (24.7%) samples, with counts ranging from 1 to 2,000 CFU/50 cm2, while E. coli was detected in 18 of 1,149 (1.6%) samples, with counts ranging from 1 to 35 CFU/50 cm2. The findings of this study demonstrated that the extent of bacterial contamination was dependent on the center, time of day, and the area sampled. While no direct correlation between contamination and illness can be made, given the high risk of food-borne illness associated with children, microbial contamination of food contact or non-food contact surfaces is an aspect of food safety that requires more attention. Emphasis on training and the development of modified standard sanitation operating procedures for child care centers are needed to reduce potential hazards.  相似文献   

13.
Of the toxins produced by Bacillus cereus, the emetic toxin is likely the most dangerous but, due to the lack of a suitable assay, the least well known. In this paper, a new, sensitive, inexpensive, and rapid bioassay for detection of the emetic toxin of B. cereus is described. The assay is based on the loss of motility of boar spermatozoa upon 24 h of exposure to extracts of emetic B. cereus strains or contaminated food. The paralyzed spermatozoa exhibited swollen mitochondria, but no depletion of cellular ATP or damage to plasma membrane integrity was observed. Analysis of the purified toxin by electrospray tandem mass spectrometry showed that it was a dodecadepsipeptide with a mass fragmentation pattern similar to that described for cereulide. The 50% effective concentration of the purified toxin to boar spermatozoa was 0.5 ng of purified toxin ml of extended boar semen−1. This amount corresponds to 104 to 105 CFU of B. cereus cells. No toxicity was detected for 27 other B. cereus strains up to 108 CFU ml−1. The detection limit for food was 3 g of rice containing 106 to 107 CFU of emetic B. cereus per gram. Effects similar to those provoked by emetic B. cereus toxin were also induced in boar spermatozoa by valinomycin and gramicidin at 2 and 3 ng ml of extended boar semen−1, respectively. The symptoms provoked by the toxin in spermatozoa indicated that B. cereus emetic toxin was acting as a membrane channel-forming ionophore, damaging mitochondria and blocking the oxidative phosphorylation required for the motility of boar spermatozoa.  相似文献   

14.
An automated method to detect salmonellae in foods was developed and tested in food samples intentionally contaminated with the test organisms. Liquid eggs, shell eggs, dry eggs, skim milk and chicken were spiked with Salmonella enteritidis, S. typhimurium or S. newport to yield 2 to 25 CFU per 25 g or ml of sample. Following pre-enrichment in universal pre-enrichment broth at 42 degrees C for 6 h (eggs and milk) or 16 h (chicken), Salmonella cells were captured by immunomagnetic beads coated with Salmonella antibody (Vicam, Watertown, MA). The beads were transferred to selective liquid media containing carbohydrate (dulcitol or xylose), amino acid (lysine or ornithine), and H2S indicator, and incubated at 42 degrees C in the BioSys instrument (MicroSys, Ann Arbor, MI). Salmonella positive samples were identified by black discoloration of the media during incubation, while negative samples remained colorless. These color changes were recorded by the instrument. All the artificially contaminated samples tested positive within 15-18 h, while control samples remained negative during 24 h incubation. The results agreed with standard identification procedures. A total of 24 h was required to detect 2 to 25 CFU of the pathogen in 25 g or ml of eggs and milk, and up to 36 h in chicken, compared to 72 h in the standard methods.  相似文献   

15.
We report detection of <13 CFU of Salmonella per 25 g egg white within 7 h by concentrating the bacteria using microfiltration through 0.2‐μm cutoff polyethersulfone hollow fiber membranes. A combination of enzyme treatment, controlled cross‐flow on both sides of the hollow fibers, and media selection were key to controlling membrane fouling so that rapid concentration and the subsequent detection of low numbers of microbial cells were achieved. We leveraged the protective effect of egg white proteins and peptone so that the proteolytic enzymes did not attack the living cells while hydrolyzing the egg white proteins responsible for fouling. The molecular weight of egg white proteins was reduced from about 70 kDa to 15 kDa during hydrolysis. This enabled a 50‐fold concentration of the cells when a volume of 525 mL of peptone and egg white, containing 13 CFU of Salmonella, was decreased to a 10 mL volume in 50 min. A 10‐min microcentrifugation step further concentrated the viable Salmonella cells by 10×. The final cell recovery exceeded 100%, indicating that microbial growth occurred during the 3‐h processing time. The experiments leading to rapid concentration, recovery, and detection provided further insights on the nature of membrane fouling enabling fouling effects to be mitigated. Unlike most membrane processes where protein recovery is the goal, recovery of viable microorganisms for pathogen detection is the key measure of success, with modification of cell‐free proteins being both acceptable and required to achieve rapid microfiltration of viable microorganisms. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1464–1471, 2016  相似文献   

16.
Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract.  相似文献   

17.
From February to November 2007, chicken meat preparations (n = 656) were sampled at 11 processing companies across Belgium. All samples were tested for Campylobacter by enrichment culture and by direct plating according to standard methods. Almost half (48.02%) of the samples were positive for Campylobacter spp. The mean Campylobacter count was 1.68 log10 CFU/g with a standard deviation of ± 0.64 log10 CFU/g. The study revealed a statistically significant variation in Campylobacter contamination levels between companies; processors with a wider frequency distribution range of Campylobacter counts provided chicken meat preparations with higher Campylobacter incidences and concentrations. There was no significant difference between the counts of Campylobacter spp. in various preparation types. However, the Campylobacter counts and incidences in chicken wings were the highest and portioned-form products (legs, wings, and breasts) showed a higher probability of being Campylobacter positive compared to minced-form products (sausages, burgers, and minced meat). The proportion of Campylobacter-positive samples was significantly higher in July than in other months. Recovery of Campylobacter spp. recovery by direct plating was higher (41.0%) compared to detection after enrichment (24.2%). Statistical modeling of the survey data showed that the likelihood of obtaining a positive result by enrichment culture increases with an increase in the Campylobacter concentration in the sample. In the present study, we provide the first enumeration data on Campylobacter contamination in Belgian chicken meat preparations and address proposals for improving Campylobacter monitoring programs.  相似文献   

18.
To avoid cells adhering to the ion-exchange membrane and damage of the cells in electrodialysis fermentation (ED-F), ED-F with a microfiltration (MF) module, was used in lactate fermentation. In this system, after 38 h of cultivation, the dry cell weight (2.89 g/l) and the number of viable cells (4.8 × 109/ml) were about 1.8 and 1.6 times more than those of the control fermentation, respectively. Lactate dehydrogenase activity in this system was maintained at a high level, resulting in reduction of fermentation time to complete batch culture within 38 h. From these results, ED-F with an MF module enabled high speed batch culture.  相似文献   

19.
Five selective media for the detection and enumeration of coagulase-positive staphylococci were evaluated for their efficiency in the recovery of 17 strains of coagulase-positive staphylococci from foods. They were Staphylococcus Medium 110 (SM-110), tellurite-glycine-agar (TGA), egg-tellurite-glycine-pyruvate-agar (ETGPA), tellurite-egg-agar (TEA), and tellurite-polymyxin-egg yolk-agar (TPEY). Statistical analysis by the rank correlation method of the efficiency with which these media recovered staphylococci from pure 24-hr Brain Heart Infusion cultures revealed the following efficiencies in descending order: (i) TPEY, (ii) ETGPA, (iii) TGA, (iv) TEA, (v) SM-110. Growth of 17 strains of coagulase-negative cocci on these media showed the following approximate descending order of inhibition to these organisms: (i) ETGPA, (ii) TEA, (iii) SM-110, (iv) TGA, (v) TPEY. The appearance of colonies of the various coagulase-negative strains on each medium was studied for the degree to which they could be confused with colonies of coagulase-positive strains. Nineteen food contaminants, including Proteus vulgaris, Bacillus sp., Escherichia coli, Erwinia sp., fecal streptococci, and others, were also studied for similarities in appearance to staphylococci and for ability to grow on the selective media. The influence of five sterile food homogenates (frozen chicken and tuna pies, custard, smoked ham, and raw whole egg) on recovery of 1,500 enterotoxigenic staphylococci (three strains) per milliliter was determined by statistical analysis. Three main effects (culture, media, and food) and three interactions (media with food, food with cultures, and media with culture) were found to be significant. Recovery on TPEY was influenced less by food than the other selective media and showed optimal recovery ability from sterile custard, eggs, and ham. TGA recovered well from sterile chicken pie and custard, SM-110 from sterile custard, and TEA from sterile ham. None of the media was outstanding in recovering staphylococci from tuna pie. The ability of the five selective media to recover 1,500 enterotoxigenic staphylococci (three strains) per ml from three sterile foods in the presence of 10 strains of contaminating bacteria added at the 0, 105, and 106 levels per milliliter was also studied and analyzed statistically. Only three factors were significant under these conditions—cultures, foods, and the interaction of media with the level of added contamination. Efficiency of recovery of TGA, SM-110, and ETGPA was found not to be dependent upon the level of contamination. Recovery on TPEY decreased with increases in the number of contaminants. TEA increased in efficiency at the 105 level, but decreased at the 106 level. When recovery on Trypticase Soy Agar was considered to be 100%, the average percentage of recovery by each of the selective media under all experimental conditions was determined.  相似文献   

20.
Eight water distribution systems were sampled over an 18-month period (528 water and 55 biofilm samples) to measure the frequency of recovery and number of mycobacteria, particularly Mycobacterium avium and Mycobacterium intracellulare, in raw source waters before and after treatment and within the distribution system. The systems were chosen to assess the influence of source water, treatment, and assimilable organic carbon levels on mycobacterial numbers. Overall, mycobacterial recovery from the systems was low (15% of samples). Numbers of mycobacteria ranged from 10 to 700,000 CFU liter−1. The number of M. avium in raw waters was correlated with turbidity. Water treatment substantially reduced the number of mycobacteria in raw waters by 2 to 4 log units. Mycobacterial numbers were substantially higher in the distribution system samples (average, 25,000-fold) than in those collected immediately downstream from the treatment facilities, indicating that mycobacteria grow in the distribution system. The increase in mycobacterial numbers was correlated with assimilable organic carbon and biodegradable organic carbon levels (r2 = 0.65, P = 0.03). Although M. intracellulare was seldom recovered from water samples, it was frequently recovered (six of eight systems) in high numbers from biofilms (average, 600 CFU/cm2). Evidently, the ecological niches of M. avium and M. intracellulare are distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号