首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process‐based, large‐scale representations of terrestrial vegetation dynamics and land‐atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire‐response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter‐annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.  相似文献   

2.
New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.  相似文献   

3.
Silica phytoliths in grasses are thought to serve as a defence mechanism against grazing ungulates by causing excessive tooth wear. It is posited that they contributed to the evolution of hypsodonty in these animals. However, some have questioned whether grass phytoliths can abrade enamel. Here Mohs hardness testing was conducted on Blue Grama grass (Bouteloua gracilis) to determine phytolith hardness. Microindentation was performed on horse and American bison molars to establish dental constituent hardness values. To infer the phytoliths' abrasion capacity, the hardness values were contrasted. Phytolith hardness ranged from 18.0 to 191.5 HV. This is considerably softer than the values obtained for ungulate enamel, which range from 332.6 to 363.4 HV, but harder than the other dental constituents. Although Blue Grama phytoliths are incapable of directly abrading enamel, when viewed in conjunction with other data on phytolith hardness, there is considerable variation across grass species and some phytoliths are actually harder than ungulate enamel. Blue Grama grass phytoliths may even promote enamel wear due to pressure accentuation caused by the recession of softer tissues. Given these findings and considerations, it is plausible phytoliths served an integral role in the co-evolution of grasses and herbivorous ungulates, although more testing is needed to bear this out.  相似文献   

4.
陆地碳循环研究中的模型方法   总被引:23,自引:3,他引:20  
陆地碳循环是全球变化研究中的重要内容,碳循环模型已成为研究陆地碳循环的必要方法.其中气候变化、大气CO2浓度上升以及人类活动引起的土地利用和土地覆盖变化导致陆地生态系统在结构、功能、组成和分布等方面的变化及其反馈关系对陆地碳循环的影响是模型模拟的关键问题.生物地理模型和生物地球化学模型是碳循环模型的两大类型,建模方法、模型性质、特点和应用范围各异.碳循环模型的发展方向是综合两类模型的特点,建立全球动态碳循环模型.  相似文献   

5.
To provide a common currency for model comparison, validation and manipulation, we suggest and describe the use of impulse response functions, a concept well-developed in other fields, but only partially developed for use in terrestrial carbon cycle modelling. In this paper, we describe the derivation of impulse response functions, and then examine (i) the dynamics of a simple five-box biosphere carbon model; (ii) the dynamics of the CASA biosphere model, a spatially explicit NPP and soil carbon biogeochemistry model; and (iii) various diagnostics of the two models, including the latitudinal distribution of mean age, mean residence time and turnover time. We also (i) deconvolve the past history of terrestrial NPP from an estimate of past carbon sequestration using a derived impulse response function to test the performance of impulse response functions during periods of historical climate change; (ii) convolve impulse response functions from both the simple five-box model and the CASA model against a historical record of atmospheric δ13C to estimate the size of the terrestrial 13C isotopic disequilibrium; and (iii) convolve the same impulse response functions against a historical record of atmospheric 14C to estimate the 14C content and isotopic disequilibrium of the terrestrial biosphere at the 1° × 1° scale. Given their utility in model comparison, and the fact that they facilitate a number of numerical calculations that are difficult to perform with the complex carbon turnover models from which they are derived, we strongly urge the inclusion of impulse response functions as a diagnostic of the perturbation response of terrestrial carbon cycle models.  相似文献   

6.
7.
Phylogenetic variation in the silicon composition of plants   总被引:13,自引:0,他引:13  
BACKGROUND AND AIMS: Silicon (Si) in plants provides structural support and improves tolerance to diseases, drought and metal toxicity. Shoot Si concentrations are generally considered to be greater in monocotyledonous than in non-monocot plant species. The phylogenetic variation in the shoot Si concentration of plants reported in the primary literature has been quantified. METHODS: Studies were identified which reported Si concentrations in leaf or non-woody shoot tissues from at least two plant species growing in the same environment. Each study contained at least one species in common with another study. KEY RESULTS: Meta-analysis of the data revealed that, in general, ferns, gymnosperms and angiosperms accumulated less Si in their shoots than non-vascular plant species and horsetails. Within angiosperms and ferns, differences in shoot Si concentration between species grouped by their higher-level phylogenetic position were identified. Within the angiosperms, species from the commelinoid monocot orders Poales and Arecales accumulated substantially more Si in their shoots than species from other monocot clades. CONCLUSIONS: A high shoot Si concentration is not a general feature of monocot species. Information on the phylogenetic variation in shoot Si concentration may provide useful palaeoecological and archaeological information, and inform studies of the biogeochemical cycling of Si and those of the molecular genetics of Si uptake and transport in plants.  相似文献   

8.
陆地生态系统碳循环模型研究概述   总被引:15,自引:1,他引:14  
陆地碳循环研究是全球变化研究中的一个重要组成部分,而碳循环模型已成为目前研究陆地碳循环的必要手段.本文针对有关碳循环研究方面的进展,介绍了陆地碳循环模型的基本结构、碳循环过程中涉及的两个基本模型以及目前陆地生态系统碳循环模型的两大类型,并通过对现有主要陆地生态系统碳收支模式的分析,指出了未来陆地碳循环模型的研究方向可能是发展基于动态植被的生物物理模型.这种耦合模型也可能是地球系统模式的重要组成部分.  相似文献   

9.
Carbon monoxide (CO) plays a major role in tropospheric chemical dynamics. Accordingly, global CO budgets have been reasonably well documented. Atmospheric CO consumption by soils contributes significantly to these budgets, with the magnitude of the sink generally considered to reflect a balance between microbial uptake and abiological production. However, assays of live fine roots showed that diverse intact plants produced carbon monoxide at net rates ranging from 2 to 3000 mµg gdw−−1 d−−1. CO production was greater for legumes than nonlegumes, and primarily associated with nodules. Excised roots from woody and herbaceous plants produced CO at comparable rates. CO production rates were similar for roots of intact plants and roots excised from those plants. The magnitude of net CO fluxes from roots was determined in part by the balance between simultaneous production and consumption. Surface sterilization of roots indicated that CO consumption was due, in part, rhizoplane CO-oxidizing bacteria, but maximum CO consumption rates were typically only a small fraction of net production rates. Assays in a Brazilian agroecosystem indicated that root CO production affects soil–atmosphere CO exchange. Estimates of global CO production rates indicated that roots contribute about 170–260 Tg CO to the soil atmosphere annually, an amount comparable to current estimates of atmospheric CO uptake by soils, and much larger than estimates of net abiological soil CO production.  相似文献   

10.
In order to better assess the role of agriculture within the global climate‐vegetation system, we present a model of the managed planetary land surface, Lund–Potsdam–Jena managed Land (LPJmL), which simulates biophysical and biogeochemical processes as well as productivity and yield of the most important crops worldwide, using a concept of crop functional types (CFTs). Based on the LPJ‐Dynamic Global Vegetation Model, LPJmL simulates the transient changes in carbon and water cycles due to land use, the specific phenology and seasonal CO2 fluxes of agricultural‐dominated areas, and the production of crops and grazing land. It uses 13 CFTs (11 arable crops and two managed grass types), with specific parameterizations of phenology connected to leaf area development. Carbon is allocated daily towards four carbon pools, one being the yield‐bearing storage organs. Management (irrigation, treatment of residues, intercropping) can be considered in order to capture their effect on productivity, on soil organic carbon and on carbon extracted from the ecosystem. For transient simulations for the 20th century, a global historical land use data set was developed, providing the annual cover fraction of the 13 CFTs, rain‐fed and/or irrigated, within 0.5° grid cells for the period 1901–2000, using published data on land use, crop distributions and irrigated areas. Several key results are compared with observations. The simulated spatial distribution of sowing dates for temperate cereals is comparable with the reported crop calendars. The simulated seasonal canopy development agrees better with satellite observations when actual cropland distribution is taken into account. Simulated yields for temperate cereals and maize compare well with FAO statistics. Monthly carbon fluxes measured at three agricultural sites also compare well with simulations. Global simulations indicate a ∼24% (respectively ∼10%) reduction in global vegetation (respectively soil) carbon due to agriculture, and 6–9 Pg C of yearly harvested biomass in the 1990s. In contrast to simulations of the potential natural vegetation showing the land biosphere to be an increasing carbon sink during the 20th century, LPJmL simulates a net carbon source until the 1970s (due to land use), and a small sink (mostly due to changing climate and CO2) after 1970. This is comparable with earlier LPJ simulations using a more simple land use scheme, and within the uncertainty range of estimates in the 1980s and 1990s. The fluxes attributed to land use change compare well with Houghton's estimates on the land use related fluxes until the 1970s, but then they begin to diverge, probably due to the different rates of deforestation considered. The simulated impacts of agriculture on the global water cycle for the 1990s are∼5% (respectively∼20%) reduction in transpiration (respectively interception), and∼44% increase in evaporation. Global runoff, which includes a simple irrigation scheme, is practically not affected.  相似文献   

11.
The expansive plains of West Siberia contain globally significant carbon stocks, with Earth's most extensive peatland complex overlying the world's largest-known hydrocarbon basin. Numerous terrestrial methane seeps have recently been discovered on this landscape, located along the floodplains of the Ob and Irtysh Rivers in hotspots covering more than 2500 km2. We articulated three hypotheses to explain the origin and migration pathways of methane within these seeps: (H1) uplift of Cretaceous-aged methane from deep petroleum reservoirs along faults and fractures, (H2) release of Oligocene-aged methane capped or trapped by degrading permafrost, and (H3) horizontal migration of Holocene-aged methane from surrounding peatlands. We tested these hypotheses using a range of geochemical tools on gas and water samples extracted from seeps, peatlands, and aquifers across the 120,000 km2 study area. Seep-gas composition, radiocarbon age, and stable isotope fingerprints favor the peatland hypothesis of seep-methane origin (H3). Organic matter in raised bogs is the primary source of seep methane, but observed variability in stable isotope composition and concentration suggest production in two divergent biogeochemical settings that support distinct metabolic pathways of methanogenesis. Comparison of these parameters in raised bogs and seeps indicates that the first is bogs, via CO2 reduction methanogenesis. The second setting is likely groundwater, where dissolved organic carbon from bogs is degraded via chemolithotrophic acetogenesis followed by acetate fermentation methanogenesis. Our findings highlight the importance of methane lateral migration in West Siberia's bog-dominated landscapes via intimate groundwater connections. The same phenomenon could occur in similar landscapes across the boreal-taiga biome, thereby making groundwater-fed rivers and springs potent methane sources.  相似文献   

12.
1. Many amphibious plant species grow in the transition between terrestrial and submerged vegetation in small lowland streams. We determined biomass development, leaf turnover rate and invertebrate herbivory during summer in terrestrial and aquatic populations of three amphibious species to evaluate advantages and disadvantages of aerial and submerged life.
2. Terrestrial populations had higher area shoot density, biomass and leaf production than aquatic populations, while leaf turnover rate and longevity were the same. Terrestrial populations experienced lower percentage grazing loss of leaf production (average 1.2–5.1%) than aquatic populations (2.9–17.3%), while the same plant dry mass was consumed per unit ground area.
3. Grazing loss increased linearly with leaf age apart from the youngest leaf stages. Grazing loss during the lifetime of leaves was therefore 2.4–3.1 times higher than mean apparent loss to standing leaves of all ages. The results imply that variation in density of grazers relative to plant production can account for differences in grazing impact between terrestrial and aquatic populations, and that fast leaf turnover keeps apparent grazing damage down.
4. We conclude that the ability of amphibious plants to grow submerged permits them to expand their niche and escape intense competition on land, but the stream does not provide a refugium against grazing and constrains plant production compared with the terrestrial habitat.  相似文献   

13.
14.
15.
Summary Stephanoeca diplocostata has a facultative requirement for silica in that silica starvation does not inhibit growth as measured by increase in cell numbers. In spite of the absence of a lorica silica impoverished protoplasts still divide in the characteristic tectiform manner and a juvenile protoplast, when released from the parent cell, still extends its lorica assembling tentacles despite the absence of costal strips with which to produce a lorica. Replenishment of silica to silica starved cells in mid to late exponential phase cultures results in a decrease in the growth rate but at the same time silica is taken up and utilised for the deposition of costal strips. Mature costal strips are extruded and accumulated in bundles of 5–8 on the surface of the protoplast but are not passed to the top of the collar as would be expected in silica enriched loricate cells. Eventually silica replenished protoplasts use the bundles of costal strips to assemble loricae for themselves. In early exponential phase cultures naked protoplasts are capable of division whilst at the same time depositing costal strips in preparation for subsequent lorica assembly. An undamaged protoplast deprived of its lorica by ultrasonic treatment also ultimately replaces the lost lorica. The manner in which the tectiform mode of costal strip accumulation and lorica assembly is modified to allow a cell to produce its own lorica is discussed.Abbrevations SDV silica deposition vesicle  相似文献   

16.
Nitrogen cycling in grazed pastures at elevated CO2: N returns by ruminants   总被引:2,自引:0,他引:2  
In pastures grazed by large herbivores, nutrients cycle both through litter and animal excreta. We compared nitrogen (N) returns from sheep grazing a temperate pasture exposed to ambient or elevated CO2 (475 μmol mol?1) in a FACE (Free Air CO2 Enrichment) experiment established in the spring of 1997. In the spring of 2000 and 2001, we measured the chemical composition of the diet, sheep faeces and of individual plant species before grazing to characterize feed intake and to compare the intake of N to the N produced in faeces. In both years under elevated CO2, leaves of the individual species exhibited lower N concentrations and higher water‐soluble carbohydrate (WSC) concentrations. There was a significantly greater proportion of legume in the diet at elevated CO2 but, together with the changes in chemical composition of individual species, this resulted in diets that had similar N but higher WSC and digestibility for both ambient and elevated CO2. We found that a greater proportion of dietary N was partitioned to urine at elevated CO2, probably because of the higher proportion of legume N in the diet, with possible differences in protein quality. A potentially significant consequence of this change in partitioning is greater N loss through volatilization at higher CO2 levels.  相似文献   

17.
Molecular dynamics simulations are performed to study the transport and structural properties of water confined in a cylindrical silica nanopore. The pore wall is amorphous and mimics a typical mesoporous silica material. The diameters of silica pores studied are 4.75, 9.51, 20 and 25 Å. The self-diffusion of water calculated decreases with pore size and indicates much slower transport compared to the bulk phase. Strong adsorption of water to the silica wall is observed in the density profiles, indicating the hydrophilic nature of the wall. The hydrogen-bonding network is strongly affected by water–silica wall interaction. The average number of hydrogen bonds per water decreased with decreasing pore diameter.  相似文献   

18.
We here measure the toxicity of MCM-41, a mesoporous silica nanomaterial, two of its functionalized analogs, AP-T, which has grafted aminopropyl groups and MP-T, which has grafted mercaptopropyl groups, and spherical silica nanoparticles (SiO2), toward human neuroblastoma (SK-N-SH) cells. Since the particles studied are not soluble in aqueous media, the metric used to report the cytotoxicity of these materials is a new quantity, Q50, which is the number of particles required to inhibit normal cell growth by 50%. Determining the number of particles per gram of material applied to the cells required both the calculated and experimentally determined surface areas of these nanomaterials. This study shows that Q50 increases in the order, MCM-41 < MP-T < AP-T ≈ SiO2, showing that on a per particle basis, MCM-41 is the most cytotoxic material studied. For the three mesoporous silica materials in this study, cytotoxicity appears related to the adsorptive surface area of the particle, although the nature of the functional group cannot be ruled out. Silica nanospheres have the lowest surface area of the particles studied but since they exhibit a Q50 value similar to that of AP-T, shape may also be important in the cytotoxicity of these materials.  相似文献   

19.
Biodiversity is thought to be essential for ecosystem stability, function and long-term sustainability. Since nitrogen is the limiting nutrient for plant growth in many terrestrial ecosystems, reactive nitrogen has the potential to reduce the diversity of terrestrial vegetation and associated biota through favouring species adapted to quickly exploiting available nutrients. Although the potential has long been recognised, only recently has enough evidence come together to show beyond reasonable doubt that these changes are already occurring. Linked together, experimental, regional/e.rnpirical, and time-series research provide a powerful argument that enhanced deposition of reactive nitrogen across Great Britain, and potentially the rest of Europe, has resulted in a significant and ongoing decline in grassland species richness and diversity.  相似文献   

20.
1. Silica in the leaves of grasses can act as a defence against both vertebrate and invertebrate herbivores. The mechanisms by which silica affects herbivore performance are not well characterized. Here we expose an insect herbivore Spodoptera exempta to high-silica diets and test two mechanisms by which silica has been proposed to act as a defence. First, that silica reduces the digestibility of leaves and second, that silica causes wear to insect mandibles, both of which could potentially impact on herbivore performance. 2. Silica reduced the efficiency with which S. exempta converted ingested food to body mass and the amount of nitrogen absorbed from their food, leading to reduced insect growth rates. The measure of how efficiently herbivores utilize digested food (ECD) was unaffected by silica. 3. These effects occurred even with short-term exposure to silica-rich diets, but they also increased markedly with the duration of exposure and affected late instars more than early instar larvae. This appears to be due to the progressive impacts of silica with longer exposure times and suggests that herbivores cannot adapt to silica defences, nor do they develop a tolerance for silica with age. 4. Exposure to silica-rich diets caused increased mandible wear in S. exempta. This effect was extremely rapid, occurring within a single instar, further reducing feeding efficiency and growth rates. These effects on insect growth and feeding efficiency are nonreversible, persisting after the herbivore has switched diets. Up to a third of this residual impact can be explained by the degree of mandible wear caused by previous silica-rich diets. 5. The impacts of silica on S. exempta larvae were progressive with exposure time and could not be compensated for, even by switching to a different diet. Thus, herbivores cannot easily adapt to physical defences such as silica, suggesting this defence will have major implications for herbivore fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号