首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
组蛋白甲基化是一种重要的表观遗传学修饰,在基因表达调节方面发挥着重要的作用.组蛋白H3赖氨酸27三甲基化(H3K27me3)是一种抑制性组蛋白标记,可被去甲基化酶UTX和JMJD3催化而移去甲基.UTX和JMJD3通过激活HOX基因而参与细胞分化和多能细胞抑制过程.在多种肿瘤中检测到UTX和JMJD3突变或表达下降,同时多种基因启动子区H3K27me3含量增多.UTX和JMJD3均被看作肿瘤抑制基因,其中UTX调节了RB依赖的细胞命运控制,而JMJD3通过激活INK4b-ARF-INK4a位点而参与了癌基因诱导的衰老.组蛋白H3K27去甲基化酶与肿瘤发生的研究使我们对癌症发展过程有了更好的理解,同时也为癌症诊断和治疗提供了新靶点.  相似文献   

7.
8.
9.
Histone H3 encoding genes, particularly H3F3A and H3F3B, the genes encoding the variant histone H3.3, are mutated at high frequency in pediatric brain and bone malignancies. Compared to the extensive studies on K27M and K36M mutations, little is known about the mechanism of G34 mutations found in pediatric glioblastoma or giant cell tumors of the bone. Here we report that unlike the K27M or K36M that affect global histone methylation, the giant cell tumors of the bone G34 mutations (G34L/W) only affect histone H3K36 and H3K27 methylation on the same mutated histone tails (in cis), a mechanism distinct from known histone mutations.  相似文献   

10.
11.
12.
13.
Evidence has indicated that lysine methyltransferase 2B (KMT2B), a major H3K4 tri-methyltransferase (H3K4me3), contributes to the development of various cancers; however, its role in cervical cancer (CC) is unclear. In this study, increased KMT2B expression was observed in human CC specimens and significantly associated with poor prognosis. The condition medium of KMT2B-overexpressing cells facilitated angiogenesis in vitro. In the subcutaneous model of human CC, KMT2B overexpression significantly promoted tumor growth and increased tumor vascular density. Meanwhile, KMT2B enhanced the migration and invasion of CC cells and promoted their metastasis to bone in a tail-vein-metastasis model. Mechanistically, the genes upregulated by KMT2B were significantly enriched in PI3K-AKT pathway. Using H3K4me3 ChIP-seq analysis, we found increased H3K4me3 level at EGF promoter region in KMT2B-overexpressing HeLa cells. ChIP-qPCR experiments not only confirmed the increased H3K4me3 level of EGF promoter but also determined that in KMT2B-overexpressing HeLa cells, KMT2B increased binding with the EGF promoter. Blocking EGFR diminished the KMT2B-induced PI3K-AKT signaling activation and CC cell migration and invasion. Moreover, EGFR inhibitors abolished the KMT2B-drived tube formation capacity of HUVECs. In conclusion, KMT2B facilitates CC metastasis and angiogenesis by upregulating EGF expression, and may serve as a new therapeutic target for CC.  相似文献   

14.
表观遗传是不涉及DNA序列变化的可遗传变化,包括DNA甲基化、组蛋白修饰和miRNA调控等。在组蛋白甲基化修饰中,主要是组蛋白赖氨酸甲基转移酶(histone lysine methyltransferase,HKMT)参与调控。有文献报道,HKMT蛋白的催化核心为SET结构域,它具有促进或抑制基因表达的作用。在里氏木霉(Trichoderma reesei)中,HKMT对纤维素酶基因的表达调控的机制尚不明确。本文阐述了以里氏木霉为研究对象,利用Split-Maker技术构建了组蛋白赖氨酸甲基转移酶基因敲除表达盒,并转化了里氏木霉T. reesei QM9414。经PCR及Southern印迹验证正确后,显微镜观察到T.reesei Δhkmt菌株菌丝较长,分支较多。检测到突变体菌株连续7d滤纸酶活(filter paper enzyme activity,AFP)和羧甲基纤维素钠酶活 (carboxymethyl cellulose sodium enzyme activity,CMCA)。结果分别比野生型菌株高出5.00 IU·mL-1、15.00 IU·mL-1。利用RT-qPCR检测到突变菌株纤维素酶及其相关基因cbh1、egl1和xyr1的表达分别高出野生型4.51、3.87和2.51倍。通过对野生型菌株和突变菌株形态特征、纤维素酶酶活性、纤维素酶相关基因表达量的探索,为进一步研究里氏木霉表观遗传调控对纤维素酶表达的影响提供了新思路和实验资料。  相似文献   

15.
表观遗传是不涉及DNA序列变化的可遗传变化,包括DNA甲基化、组蛋白修饰和miRNA调控等。在组蛋白甲基化修饰中,主要是组蛋白赖氨酸甲基转移酶(histone lysine methyltransferase,HKMT)参与调控。有文献报道,HKMT蛋白的催化核心为SET结构域,它具有促进或抑制基因表达的作用。在里氏木霉(Trichoderma reesei)中,HKMT对纤维素酶基因的表达调控的机制尚不明确。本文阐述了以里氏木霉为研究对象,利用Split-Maker技术构建了组蛋白赖氨酸甲基转移酶基因敲除表达盒,并转化了里氏木霉T. reesei QM9414。经PCR及Southern印迹验证正确后,显微镜观察到T.reesei Δhkmt菌株菌丝较长,分支较多。检测到突变体菌株连续7d滤纸酶活(filter paper enzyme activity,AFP)和羧甲基纤维素钠酶活 (carboxymethyl cellulose sodium enzyme activity,CMCA)。结果分别比野生型菌株高出5.00 IU·mL-1、15.00 IU·mL-1。利用RT-qPCR检测到突变菌株纤维素酶及其相关基因cbh1、egl1和xyr1的表达分别高出野生型4.51、3.87和2.51倍。通过对野生型菌株和突变菌株形态特征、纤维素酶酶活性、纤维素酶相关基因表达量的探索,为进一步研究里氏木霉表观遗传调控对纤维素酶表达的影响提供了新思路和实验资料。  相似文献   

16.
Overexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma. MMSET catalyzes dimethylation of lysine 36 on histone H3 (H3K36me2), and its overexpression causes a global increase in H3K36me2, redistributing this mark in a broad, elevated level across the genome. Here, we demonstrate that an increased level of MMSET also induces a global reduction of lysine 27 trimethylation on histone H3 (H3K27me3). Despite the net decrease in H3K27 methylation, specific genomic loci exhibit enhanced recruitment of the EZH2 histone methyltransferase and become hypermethylated on this residue. These effects likely contribute to the myeloma phenotype since MMSET-overexpressing cells displayed increased sensitivity to EZH2 inhibition. Furthermore, we demonstrate that such MMSET-mediated epigenetic changes require a number of functional domains within the protein, including PHD domains that mediate MMSET recruitment to chromatin. In vivo, targeting of MMSET by an inducible shRNA reversed histone methylation changes and led to regression of established tumors in athymic mice. Together, our work elucidates previously unrecognized interplay between MMSET and EZH2 in myeloma oncogenesis and identifies domains to be considered when designing inhibitors of MMSET function.  相似文献   

17.
We have investigated the expression of a recently described, solitary human H3 histone gene. Using RNase protection assays, the corresponding mRNA could only be detected in RNA preparations from human testis, whereas several human cell lines and somatic tissues did not exhibit expression of this gene.In situhybridization of sections from human testis revealed expression to be confined to primary spermatocytes. In addition to H1t, this novel H3 gene, which is located on chromosome 1, is the second tissue-specific human histone gene that has been found to be expressed solely in the testis.  相似文献   

18.
《Cell reports》2020,30(4):1223-1234.e8
  1. Download : Download high-res image (238KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号