首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Past conservation initiatives and rapidly decreasing human populations in modern Japan have contributed to population recoveries of Sika deer (Cervus nippon), wild boar (Sus scrofa), and Japanese macaque (Macaca fuscata) throughout the country. Ironically, however, these recoveries have not always received a favorable reception, because these mammals can also be agricultural pests. To open public debate on the recoveries, based on a thorough understanding of their multifaceted roles in sustaining the local ecosystem, we evaluated the initial stage ripple effects caused by the mammalian population recovery on the community assembly of dung beetles, which are keystone decomposer organisms in terrestrial ecosystems. For the evaluation, we conducted manipulative snapshot experiments, using camera and pitfall traps, for mammal and dung beetle assemblages, respectively, in four different mountain ranges within the heavy snow areas of northern Japan, where the recovery of three mammal populations was at an early stage. The current findings implied that, although the feces of every recovering mammal species could provide valuable resources for most beetles, the ripple effects from the mammal population recoveries were subject to hysteresis of the local ecosystem, i.e., catastrophic shifts in ecosystems originating from the historical background of regional mammal defaunation. In particular, the abundance of tunnelers that could benefit from positive ripple effects decreased with an increase in past disturbances, which resulted in emptier forests, i.e., an ecosystem with fewer large mammals. The findings suggested that recovering populations of large mammals do not always contribute to the restoration of the original dung beetle communities, at least initially.  相似文献   

2.
Assessing the status and trends in animal populations is essential for effective species conservation and management practices. However, unless time-series abundance data demonstrate rapid and reliable fluctuations, objective appraisal of directionality of trends is problematic. We adopted a multiple-working hypotheses approach based on information-theoretic and Bayesian multi-model inference to examine the population trends and form of intrinsic regulation demonstrated by a long-lived species, the southern elephant seal. We also determined the evidence for density dependence in 11 other well-studied marine mammal species. (1) We tested the type of population regulation for elephant seals from Marion Island (1986–2004) and from 11 other marine mammal species, and (2) we described the trends and behavior of the 19-year population time series at Marion Island to identify changes in population trends. We contrasted five plausible trend models using information-theoretic and Bayesian-inference estimates of model parsimony. Our analyses identified two distinct phases of population growth for this population with the inflexion occurring in 1998. Thus, the population decreased between 1986 and 1997 (−3.7% per annum) and increased between 1997 and 2004 (1.9% per annum). An index of environmental stochasticity, the Southern Oscillation Index, explained some of the variance in r and N. We determined analytically that there was good evidence for density dependence in the Marion Island population and that density dependence was widespread among marine mammal species (67% of species showed evidence for population regulation). This approach demonstrates the potential functionality of a relatively simple technique that can be applied to short time series to identify the type of regulation, and the uncertainty associated with the phenomenon, operating in populations of large mammals.  相似文献   

3.
Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994–2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R2 adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R2 adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising step in integrating stranding records to monitor the consequences of environmental changes in marine ecosystems over long time scales.  相似文献   

4.
5.
Du B  Wang D 《Zoological science》2006,23(11):1017-1020
C-values, which estimate genome size, have puzzled geneticists for years because they bear no relationship to organismal complexity. Though C-values have been estimated for thousands of species, considerably more data are required in order to better understanding genome evolution. This is particularly true for mammals, in which C-values are known for less than 8% of the total number of mammalian species. Among marine mammals, a C-value has been estimated only for the bottlenose dolphin (Tursiops truncatus). Thus examination of additional species of marine mammals is necessary for comparative purposes. It will enable a better understanding of marine mammal genome evolution, and it is also relevant to conservation, because larger genome size has been linked to increased likelihood of extinction in some plant and animal groups. Our study presents C-values of seven marine mammal species, including five cetacean species that are endangered to varying degrees. Similarly to the results for other groups, our results suggest that larger genome size in cetaceans is related to an increased likelihood of extinction.  相似文献   

6.
Global conservation priorities for marine turtles   总被引:2,自引:0,他引:2  
Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world''s 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa.  相似文献   

7.
Since the 1990s, Brucella strains not matching the characteristics of any of the six conventional species have been isolated worldwide from marine mammals. In this study, 31 Brucella strains isolated from various marine mammals were examined for their oxidative metabolic pattern on 12 amino-acid and carbohydrate substrates. Three main oxidative profiles different from those of the Brucella terrestrial mammal strains were identified for the marine mammal strains: one gathering strains isolated from pinnipeds and two gathering strains from cetaceans. Thus, both oxidative metabolism results and previous molecular studies are in agreement with the proposal of two new Brucella species, Brucella pinnipediae and Brucella cetaceae, to classify the Brucella strains isolated from marine mammals, and are also in accordance with a classification of species of the Brucella genus based on host preference.  相似文献   

8.
9.
Despite heavy overexploitation and near extirpation, some populations of large whales are recovering. Monitoring their recovery has important implications for conservation, management and our understanding of population dynamics and recovery in large mammals. The eastern Australian population of humpback whales was hunted to near-extirpation by the early 1960s. Despite this, the population started to recover, and structured surveys were initiated in the 1980s. These surveys comprise one of the longest and most consistent series of surveys of a population of whales in the world. Collectively, they have demonstrated a rapid recovery of the population with a long-term average rate of increase of 10.9% per annum. Here, we present the results of the last three surveys, conducted in 2007, 2010 and 2015. The 2015 survey shows that the population is essentially recovered, with abundance estimated at 24,545 whales (95% confidence interval 21,631–27,851), and yet continues to grow at a rapid rate. Modeling the rate of growth and abundance suggests that either the whales are heading for a higher than expected abundance of at least 40,000 whales or that an irruption may occur with models suggesting a peak in whale abundance in 2021–2026. Understanding the possible future scenarios of this population is critical to its management. This situation also presents a rare opportunity to study in detail the growth of a well-defined population of large mammal as it recovers from severe depletion.  相似文献   

10.
Studies on small and declining populations dominate research in conservation biology. This emphasis reflects two overarching frameworks: the small-population paradigm focuses on correlates of increased extinction probability; the declining-population paradigm directs attention to the causes and consequences of depletion. Neither, however, particularly informs research on the determinants, rate or uncertainty of population increase. By contrast, Allee effects (positive associations between population size and realized per capita population growth rate, rrealized, a metric of average individual fitness) offer a theoretical and empirical basis for identifying numerical and temporal thresholds at which recovery is unlikely or uncertain. Following a critique of studies on Allee effects, I quantify population-size minima and subsequent trajectories of marine fishes that have and have not recovered following threat mitigation. The data suggest that threat amelioration, albeit necessary, can be insufficient to effect recovery for populations depleted to less than 10% of maximum abundance (Nmax), especially when they remain depleted for lengthy periods of time. Comparing terrestrial and aquatic vertebrates, life-history analyses suggest that population-size thresholds for impaired recovery are likely to be comparatively low for marine fishes but high for marine mammals. Articulation of a ‘recovering population paradigm’ would seem warranted. It might stimulate concerted efforts to identify generic impaired recovery thresholds across species. It might also serve to reduce the confusion of terminology, and the conflation of causes and consequences with patterns currently evident in the literature on Allee effects, thus strengthening communication among researchers and enhancing the practical utility of recovery-oriented research to conservation practitioners and resource managers.  相似文献   

11.
Many conservation decisions rely on the assumption that multiple populations will respond similarly to management. However, few attempts have been made to evaluate indicators of population trends (i.e. population indicator species). Eradication of introduced mammals from offshore islands is a commonly used management technique for conservation of native taxa in New Zealand. Pacific rats and rabbits were eradicated from Korapuki Island in 1986/1987 enabling population recovery of native species that had been suppressed by predation or competition. However, the degree to which species’ responses were correlated has not been evaluated. We investigated correlations among lizard population trends on Korapuki Island as a test of the population indicator species concept. Our dataset consisted of captures of the five resident lizard species (three skinks, two geckos) from biannual pitfall trapping over a 10 year period (1986–1995) immediately following rodent eradication. We used a Bayesian modelling approach to examine correlations in population trends (based on mean annual counts) between species. Population trends were positively correlated for all species pairs (substantively for 90 % of pairs) and we detected no negative correlations. Systematic searches for single lizard species may indicate correlated recovery of lizard populations following rodent eradication and provide a cost-effective alternative to traditional ‘whole community’ monitoring. Our findings support evidence-based use of the population indicator species concept in cases where a shared ecological driver can be identified.  相似文献   

12.
Making use of an extensive network of volunteer birdwatchers, this study illustrates how a large-scale monitoring scheme originally designed for common breeding birds can be adapted to also provide robust monitoring data for medium- to large-sized, easily detectable terrestrial mammals. Compared with bird monitoring, the monitoring of common and widespread terrestrial mammals is rarely carried out using a well-designed sampling design and is largely restricted to sites selected by the observer or biased towards particular habitats of interest, making it difficult to know whether trends are representative of the populations of interest. In response to the scarcity of reliable mammal monitoring data in the UK, the principal national bird monitoring scheme, the Breeding Bird Survey (BBS), was expanded to collect information on mammals. The focus was on larger, easily detectable species, although observers have the opportunity to record any mammal species. Here, we present population trends at national and regional scales for nine species of common mammal over the first 18 years of BBS mammal monitoring and examine these in relation to our current knowledge on these species. We further discuss the potential of these data for addressing important questions of conservation and management concern which may be difficult to explore with existing data.  相似文献   

13.
Understanding environmental and climatic drivers of natural mortality of marine mammals is critical for managing populations effectively and for predicting responses to climate change. Here we use a 17-year dataset to demonstrate a clear relationship between environmental forcing and natural mortality of inshore marine mammals across a subtropical-tropical coastline spanning a latitudinal gradient of 13° (>2000 km of coastline). Peak mortality of inshore dolphins and dugongs followed sustained periods of elevated freshwater discharge (9 months) and low air temperature (3 months). At a regional scale, these results translated into a strong relationship between annual mortality and an index of El Niño-Southern Oscillation. The number of cyclones crossing the coastline had a comparatively weak effect on inshore marine mammal mortality, and only in the tropics. Natural mortality of offshore/migratory cetaceans was not predicted by freshwater discharge, but was related to lagged air temperature. These results represent the first quantitative link between environmental forcing and marine mammal mortality in the tropics, and form the basis of a predictive tool for managers to prepare responses to periods of elevated marine mammal mortality.  相似文献   

14.
Knowledge of abundance, trends and distribution of cetacean populations is needed to inform marine conservation efforts, ecosystem models and spatial planning. We compiled a geo-spatial database of published data on cetacean abundance from dedicated visual line-transect surveys and encoded >1100 abundance estimates for 47 species from 430 surveys conducted worldwide from 1975–2005. Our subsequent analyses revealed large spatial, temporal and taxonomic variability and gaps in survey coverage. With the exception of Antarctic waters, survey coverage was biased toward the northern hemisphere, especially US and northern European waters. Overall, <25% of the world''s ocean surface was surveyed and only 6% had been covered frequently enough (≥5 times) to allow trend estimation. Almost half the global survey effort, defined as total area (km2) covered by all survey study areas across time, was concentrated in the Eastern Tropical Pacific (ETP). Neither the number of surveys conducted nor the survey effort had increased in recent years. Across species, an average of 10% of a species'' predicted range had been covered by at least one survey, but there was considerable variation among species. With the exception of three delphinid species, <1% of all species'' ranges had been covered frequently enough for trend analysis. Sperm whales emerged from our analyses as a relatively data-rich species. This is a notoriously difficult species to survey visually, and we use this as an example to illustrate the challenges of using available data from line-transect surveys for the detection of trends or for spatial planning. We propose field and analytical methods to fill in data gaps to improve cetacean conservation efforts.  相似文献   

15.
Many marine populations and ecosystems have experienced strong historical depletions, yet reports of recoveries are increasing. Here, we review the growing research on marine recoveries to reveal how common recovery is, its magnitude, timescale and major drivers. Overall, 10-50% of depleted populations and ecosystems show some recovery, but rarely to former levels of abundance. In addition, recovery can take many decades for long-lived species and complex ecosystems. Major drivers of recovery include the reduction of human impacts, especially exploitation, habitat loss and pollution, combined with favorable life-history and environmental conditions. Awareness, legal protection and enforcement of management plans are also crucial. Learning from historical recovery successes and failures is essential for implementing realistic conservation goals and promising management strategies.  相似文献   

16.
Killer Whales are well-known as predators of other marine mammals, including the large Sperm and baleen whales. Members of all marine mammal families, except the river dolphins and manatees, have been recorded as prey of Killer Whales; attacks have been observed on 20 species of cetaceans, 14 species of pinnipeds, the Sea Otter, and the Dugong. Ecological interactions have not been systematically studied and further work may indicate that the Killer Whale is a more important predator for some populations than previously believed. Not all behavioural interactions between Killer Whales and other marine mammal species result in predation, however. Some involve 'harassment' by the Killer Whales, feeding by both species in the same area, porpoises playing around Killer Whales, both species apparently 'ignoring' each other, and even apparently unprovoked attacks on Killer Whales by sea lions. These non-predatory interactions are relatively common. We conclude that interactions between Killer Whales and marine mammals are complex, involving many different factors that we are just beginning to understand.  相似文献   

17.
Reliable abundance estimates are critical for management and conservation of coastal small cetaceans. This is particularly important in developing countries where coastal human populations are increasing, the impacts of anthropogenic activities are often unknown, and the resources necessary to assess coastal cetaceans are limited. We adapted ship‐based line transect methods to small‐boat surveys to estimate the abundance of bottlenose dolphins (Tursiops truncatus) at Turneffe Atoll, Belize. Using a systematic survey design with random start and uniform coverage, 34 dolphin clusters were sighted during small‐boat line transect surveys conducted in 2005–2006. Distance sampling methods estimated abundance at 216 individuals (CV = 27.7%, 95% CI = 126–370). Due to species rarity in the Atoll, small sample size, and potential violations in line transect assumptions, the estimate should be considered preliminary. Nevertheless, it provides up‐to‐date information on the status of a regional population in an area under increasing threat of habitat loss and prey depletion via uncontrolled development and unsustainable fishing. This information will be useful as Belize develops a new conservation initiative to create a comprehensive and resilient marine protected area system. Our study illustrates the application of distance sampling methods to small‐boat surveys to obtain abundance estimates of coastal cetaceans in a region lacking resources.  相似文献   

18.
Over 1,000 mammal species are red-listed by IUCN, as Critically Endangered, Endangered or Vulnerable. Conservation of many threatened mammal species, even inside protected areas, depends on costly active day-to-day defence against poaching, bushmeat hunting, invasive species and habitat encroachment. Many parks agencies worldwide now rely heavily on tourism for routine operational funding: >50% in some cases. This puts rare mammals at a new risk, from downturns in tourism driven by external socioeconomic factors. Using the survival of individual animals as a metric or currency of successful conservation, we calculate here what proportions of remaining populations of IUCN-redlisted mammal species are currently supported by funds from tourism. This proportion is ≥5% for over half of the species where relevant data exist, ≥15% for one fifth, and up to 66% in a few cases. Many of these species, especially the most endangered, survive only in one single remaining subpopulation. These proportions are not correlated either with global population sizes or recognition as wildlife tourism icons. Most of the more heavily tourism-dependent species, however, are medium sized (>7.5 kg) or larger. Historically, biological concern over the growth of tourism in protected areas has centered on direct disturbance to wildlife. These results show that conservation of threatened mammal species has become reliant on revenue from tourism to a previously unsuspected degree. On the one hand, this provides new opportunities for conservation funding; but on the other, dependence on such an uncertain source of funding is a new, large and growing threat to red-listed species.  相似文献   

19.
Deterministic feedbacks within populations interact with extrinsic, stochastic processes to generate complex patterns of animal abundance over time and space. Animals inherently differ in their responses to fluctuating environments due to differences in body sizes and life history traits. However, controversy remains about the relative importance of deterministic and stochastic forces in shaping population dynamics of large and small mammals. We hypothesized that effects of environmental stochasticity and density dependence are stronger in small mammal populations relative to their effects in large mammal populations and thus differentiate the patterns of population dynamics between them. We conducted an extensive, comparative analysis of population dynamics in large and small mammals to test our hypothesis, using seven population parameters to describe general dynamic patterns for 23 (14 species) time series of observations of abundance of large mammals and 38 (21 species) time series for small mammals. We used state‐space models to estimate the strength of direct and delayed density dependence as well as the strength of environmental stochasticity. We further used phylogenetic comparative analysis to detect differences in population dynamic patterns and individual population parameters, respectively, between large and small mammals. General population dynamic patterns differed between large and small mammals. However, the strength of direct and delayed density dependence was comparable between large and small mammals. Moreover, the variances of population growth rates and environmental stochasticity were greater in small mammals than in large mammals. Therefore, differences in population response to stochastic forces and strength of environmental stochasticity are the primary factor that differentiates population dynamic patterns between large and small mammal species.  相似文献   

20.
The high biodiversity of small mammal species in the Serengeti ecosystem provides this ecosystem with important conservation value. However, whether the extensive development of roads has negative impacts on the small mammal population has not been tested. Small mammal population diversity and abundance were examined in this study using live trapping at sites close to (experimental) and away (control) from the main gravel road during the short rainy seasons in November and December 2011 and 2012. A total of 138 individuals from three orders representing six families and fourteen species were collected over 4,860 trap nights. There were no significant differences in the species richness, diversity or abundance of small mammals between the control and experimental sites (p > 0.05), suggesting that the current gravel road does not have a significant impact on the small mammal population. These findings were ascribed to the availability of favourable habitats at both distances as a result of little road usage due to poor conditions. Should the road be improved, the control of anthropogenic activities in the area should be given high priority. Continuous monitoring of the small mammal populations in the area is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号