共查询到20条相似文献,搜索用时 0 毫秒
1.
成纤维细胞生长因子(FGFs)通过作用于其受体(成纤维细胞生长因子受体,FGFRs)在许多生理过程中发挥重要作用,如胚胎形成、创伤修复、血管生成等。近年来,越来越多的证据表明FGFRs是某些癌症的驱动基因,并且以"细胞自治"的方式维持肿瘤细胞的恶性特征,通过诱导促有丝分裂和生存信号、促进肿瘤细胞侵袭转移、促进上皮间质转化、促进血管生成及参与肿瘤复发耐药作用作为癌基因参与肿瘤发生发展进程的多重步骤,但也有研究证实FGFR信号在某些肿瘤类型中具有抑制肿瘤的功能。这些研究结果使得FGFRs成为越来越具有吸引力的癌症治疗新靶点。本文阐述了FGFRs信号通路在多种肿瘤中的作用,并且对处于研发或试验阶段的抗FGFRs药物(包括小分子酪氨酸激酶抑制剂和单克隆抗体)进行了概括。 相似文献
2.
Masamitsu Mikami Tatsuya Masuda Takuya Kanatani Mina Noura Katsutsugu Umeda Hidefumi Hiramatsu Hirohito Kubota Tomoo Daifu Atsushi Iwai Etsuko Yamamoto Hattori Kana Furuichi Saho Takasaki Sunao Tanaka Yasuzumi Matsui Hidemasa Matsuo Masahiro Hirata Tatsuki R. Kataoka Tatsutoshi Nakahata Yasumichi Kuwahara Tomoko Iehara Hajime Hosoi Yoichi Imai Junko Takita Hiroshi Sugiyama Souichi Adachi Yasuhiko Kamikubo 《Molecules and cells》2022,45(12):886
3.
D. S. Mikhaylenko B. Y. Alekseev D. V. Zaletaev R. I. Goncharova M. V. Nemtsova 《Biochemistry. Biokhimii?a》2018,83(8):930-943
Fibroblast growth factor (FGF) plays an important role in human embryogenesis, angiogenesis, cell proliferation, and differentiation. Carcinogenesis is accompanied by aberrant constitutive activation of FGF receptors (FGFRs) resulting from missense mutation in the FGFR1-4 genes, generation of chimeric oncogenes, FGFR1-4 gene amplification, alternative splicing shift toward formation of mesenchymal FGFR isoforms, and FGFR overexpression. Altogether, these alterations contribute to auto-and paracrine stimulation of cancer cells and neoangiogenesis. Certain missense mutations are found at a high rate in urinary bladder cancer and can be used for non-invasive cancer recurrence diagnostics by analyzing urine cell pellet DNA. Chimeric FGFR1/3 and amplified FGFR1/2 genes can predict cell response to the targeted therapy in various oncological diseases. In recent years, high-throughput sequencing has been used to analyze exomes of virtually all human tumors, which allowed to construct phylogenetic trees of clonal cancer evolution with special emphasis on driver mutations in FGFR1-4 genes. At present, FGFR blockers, such as multi-kinase inhibitors, specific FGFR inhibitors, and FGF ligand traps are being tested in clinical trials. In this review, we discuss current data on the functioning of the FGFR family proteins in both normal and cancer cells, mutations in the FGFR1-4 genes, and mechanisms underlying their oncogenic potential, which might be interesting to a broad range of scientists searching for specific tumor markers and targeted anti-cancer drugs. 相似文献
4.
5.
成纤维细胞生长因子5(fibroblast growth factor 5,FGF5)是成纤维细胞生长因子家族(FGFs)的成员之一,在哺乳动物毛囊,神经系统,睾丸等多个部位及胚胎发育过程中均有表达.研究发现,FGF5具有广泛的生物学活性,如作为毛发生长重要的调节因子其编码基因突变将导致毛发异常生长,作为丝裂原在干细胞增殖,血管生成和肢体肌发育等方面发挥重要作用,以及在高血压,肿瘤等方面具有重要的生物学功能.目前,FGF5在多种疾病中的功能和作用机制尚需进一步深入研究,但其在毛发生长,干细胞增殖及在心血管疾病等方面的生物学作用具有重大的意义和临床应用价值.总结了近些年FGF5的研究进展,系统阐述了FGF5在毛发生长,干细胞增殖分化,心血管疾病及癌症等方面的相关作用机制,为进一步深入研究FGF5在疾病治疗中的作用和开发利用提供参考. 相似文献
6.
《Journal of receptor and signal transduction research》2013,33(1-4):185-197
AbstractIn order to map in detail the ligand binding sites of fibroblast growth factor receptor 2 (FGFR2) and keratinocyte growth factor receptor (KGFR), we have generated receptor molecules that are chimeric within the membrane proximal sequence that varies between them. The chimeric molecules are found to bind aFGF with a greater than 5-fold difference in affinity, indicating that there is coupling between the chimeric regions with respect to aFGF binding. Further, binding of bFGF and KGF is abolished in the chimeras, showing that the binding site for these ligands requires the whole of the 48- or 50- amino acid variable sequence to be intact. Direct interactions between the different regions exchanged in the chimeras are most probably involved in forming KGF or bFGF binding sites. 相似文献
7.
目的:检测成纤维生长因子受体(fibroblast growth factor receptors,FGFRs)在小鼠破骨细胞中的表达情况,为探讨FGFRs时破骨细胞的直接调控作用奠定基础.方法:采用巨噬细胞集落刺激因子(macrophage colony stimulating factor,M-CSF)和破骨细胞分化因子(receptor activator of nuclear factor-B ligand,RANKL)诱导小鼠骨髓单核细胞分化为破骨细胞.提取细胞总RNA后经逆转录获得小鼠破骨细胞cDNA,根据FGFRs基因编码区序列设计的引物进行PCR扩增并对PCR扩增产物进行测序.为进一步验证转录水平的结果,提取细胞总蛋白电泳后进行免疫印迹实验.结果:诱导5d后可见TRAP( )多核细胞出现,小鼠破骨细胞在转录水平和翻译水平均只可检测到FGFR1和FGFR3基因的表达产物.结论:M=CSF和RANKL可成功诱导出小鼠破骨细胞,FGFR1和FGFR3基因在小鼠破骨细胞中均有表达. 相似文献
8.
Kaige Ma Gurjit Singh Jun Wang InSug O-Sullivan Gina Votta-Velis Benjamin Bruce Arivarasu Natarajan Anbazhagan Andre J. van Wijnen Hee-Jeong Im 《International journal of biological sciences》2023,19(2):675
Pain is the major reason that patients suffering from osteoarthritis (OA) seek medical care. We found that vascular endothelial growth factors (VEGFs) mediate signaling in OA pain pathways. To determine the specific contributions of VEGFs and their receptors (VEGFRs) to joint pathology and pain transmission during OA progression, we studied intra-articular (IA) injections of VEGF ligands into murine knee joints. Only VEGF ligands specific for the activation of VEGFR1, but not VEGFR2, induced allodynia within 30 min. Interventions in OA by inhibitors of VEGFRs were done in vivo using a preclinical murine OA model by IA injections of selective inhibitors of VEGFR1/VEGFR2 kinase (pazopanib) or VEGFR2 kinase (vandetanib). OA phenotypes were evaluated using pain-associated murine behavioral tests and histopathologic analyses. Alterations in VEGF/VEGFR signaling by drugs were determined in knee joints, dorsal root ganglia, and spinal cord by immunofluorescence microscopy. Pazopanib immediately relieved OA pain by interfering with pain transmission pathways. Pain reduction by vandetanib was mainly due to the inhibition of cartilage degeneration by suppressing VEGFR2 expression. In conclusion, IA administration of pazopanib, which simultaneously inhibits VEGFR1 and VEGFR2, can be developed as an ideal OA disease-modifying drug that rapidly reduces joint pain and simultaneously inhibits cartilage degeneration. 相似文献
9.
Specific, high-affinity binding of FGF2 was evaluated in cultured skeletal muscle satellite cells from young (3- to 4-week-old) and adult (9- to 12-month-old) rats prior to the first division in culture. Specific binding of FGF2 was detected on satellite cells from young rats at 18 h postplating, the earliest time examined, but specific binding was not detectable until 42 h on satellite cells from old rats. This correlates well with the delayed entry into the cell cycle exhibited by adult satellite cells and with the ability of satellite cells from rats of these ages to proliferate in response to FGF2. Patterns of tyrosine phosphorylation in whole cell extracts, following stimulation by FGF2, indicated specific FGF2 phosphorylation of proteins of 150/145, 90, 42, and 35 kDa in cells from both age groups. Several growth factors were evaluated for their ability to stimulate early entry of adult satellite cells into the cell cycle, and none of the following growth factors were able to activate proliferation of these cells: FGF2, IGF-1, IGF-2, PDGF-BB, TGF-β1, or TGF-β2. In addition, specific binding of FGF2 to 48-h cultures of adult satellite cells was not stimulated by FGF2, IGF-1, IGF-2, PDGF-BB, or TGF-β2, and specific binding was significantly decreased (P < 0.05) by FGF2 and TGF-β2. Specific binding was significantly lower in cells treated with PDGF-BB than in cells treated with either form of IGF but was greater than in cells treated with FGF2 or TGF-β2. The results of these experiments suggest that expression of functional FGF receptors on the surface of satellite cells may represent an important step in the activation of quiescent satellite cells. 相似文献
10.
可变淋巴细胞受体(variable lymphocyte receptor, VLR)是2004年于无颌类脊椎动物七鳃鳗(Lampetra japonicum)中发现的一种新型受体。VLR具有分子结构简单、识别抗原种类广泛、对蛋白质和聚糖的结合特异性强且亲和力高、化学性质稳定等多方面优点。研究表明,VLR可识别表达于腺癌和鳞状细胞癌等细胞表面的碳水化合物,以及多发性骨髓瘤浆细胞表面的特异性标志物。VLR经改造后构建的重组分子可用于恶性肿瘤的成像、诊断和治疗。近年来,VLR在抗肿瘤免疫反应中的作用及以其作为疫苗的研究不断深入。本文对VLR研究的最新进展进行综述,以期为进一步的药物开发及临床研究等提供参考。 相似文献
11.
Hui Li Natalie Lui Tiffany Cheng Hsin-Hui K. Tseng Dongsheng Yue Etienne Giroux-Leprieur Hanh T. Do Qing Sheng Joy Q. Jin Thomas W. Luh David M. Jablons Biao He 《PloS one》2013,8(3)
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis. Current treatment is rarely curative, thus novel meaningful therapies are urgently needed. Inhibition of Hedgehog (Hh) signaling at the cell membrane level in several cancers has shown anti-cancer activity in recent clinical studies. Evidence of Hh-independent Gli activation suggests Gli as a more potent therapeutic target. The current study is aimed to evaluate the potential of Gli as a therapeutic target to treat MPM. The expression profiles of Gli factors and other Hh signaling components were characterized in 46 MPM patient tissue samples by RT-PCR and immunohistochemistry. Cultured cell lines were employed to investigate the requirement of Gli activation in tumor cell growth by inhibiting Gli through siRNA or a novel small molecule Gli inhibitor (Gli-I). A xenograft model was used to evaluate Gli-I in vivo. In addition, a side by side comparison between Gli and Smoothened (Smo) inhibition was conducted in vitro using siRNA and small molecule inhibitors. Our study reported aberrant Gli1 and Gli2 activation in a large majority of tissues. Inhibition of Gli by siRNAs or Gli-I suppressed cell growth dramatically both in vitro and in vivo. Inhibition of Gli exhibited better cytotoxicity than that of Smo by siRNA and small molecule inhibitors vismodegib and cyclopamine. Combination of Gli-I and pemetrexed, as well as Gli-I and vismodegib demonstrated synergistic effects in suppression of MPM proliferation in vitro. In summary, Gli activation plays a critical role in MPM. Inhibition of Gli function holds strong potential to become a novel, clinically effective approach to treat MPM. 相似文献
12.
Mapping of Murine Fibroblast Growth Factor Receptors Refines Regions of Homology between Mouse and Human Chromosomes 总被引:1,自引:0,他引:1
Karen B. Avraham David Givol Aaron Avivi Avner Yayon Neal G. Copeland Nancy A. Jenkins 《Genomics》1994,21(3)
The genes for the fibroblast growth factor receptors Fgfr2, Fgfr3, and Fgfr4 have been mapped in the mouse using an interspecific backcross mapping panel. The Fgfr loci map to previously defined regions of homology between human and mouse chromosomes and provide additional information regarding human/mouse comparative mapping. 相似文献
13.
为了降低bFGF(basic fibroblast growth factor)的生产成本,结合植物生物反应器的优点,就bFGF在转基因苜蓿中的表达进行了探索.将bFGF插入植物表达载体pBⅡ21中,获得了含有bFGF基因的植物表达pBIcbFGF,再将pBIcbFGF利用冻融法转到农杆菌中.利用农杆菌介导法将基因转化保定苜蓿,转基因苜蓿在TM-1培养基+20 mg/L卡那霉素(Kan)+200 mg/L特美汀(Tim)中诱导分化,在生根培养基中生根,获得再生植株.再生植株通过PCR检测、RT-PCR及Western blot证实外源基因已经在苜蓿中成功表达.获得含有目的蛋白的阳性植株.为苜蓿作为植物生物反应器生产bFGF奠定了理论及技术基础. 相似文献
14.
15.
Lucía Saucedo Gabriela N. Buffa Marina Rosso Tomás Guillardoy Adrian Góngora María J. Munuce Mónica H. Vazquez-Levin Clara Marín-Briggiler 《PloS one》2015,10(5)
Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. 相似文献
16.
Hao Yin Matthew J. Frontini John-Michael Arpino Zengxuan Nong Caroline O'Neil Yiwen Xu Brittany Balint Aaron D. Ward Subrata Chakrabarti Christopher G. Ellis Robert Gros J. Geoffrey Pickering 《The Journal of biological chemistry》2015,290(36):22127-22142
Tumor vessel normalization has been proposed as a therapeutic paradigm. However, normal microvessels are hierarchical and vasoreactive with single file transit of red blood cells through capillaries. Such a network has not been identified in malignant tumors. We tested whether the chaotic tumor microcirculation could be reconfigured by the mesenchyme-selective growth factor, FGF9. Delivery of FGF9 to renal tumors in mice yielded microvessels that were covered by pericytes, smooth muscle cells, and a collagen-fortified basement membrane. This was associated with reduced pulmonary metastases. Intravital microvascular imaging revealed a haphazard web of channels in control tumors but a network of arterioles, bona fide capillaries, and venules in FGF9-expressing tumors. Moreover, whereas vasoreactivity was absent in control tumors, arterioles in FGF9-expressing tumors could constrict and dilate in response to adrenergic and nitric oxide releasing agents, respectively. These changes were accompanied by reduced hypoxia in the tumor core and reduced expression of the angiogenic factor VEGF-A. FGF9 was found to selectively amplify a population of PDGFRβ-positive stromal cells in the tumor and blocking PDGFRβ prevented microvascular differentiation by FGF9 and also worsened metastases. We conclude that harnessing local mesenchymal stromal cells with FGF9 can differentiate the tumor microvasculature to an extent not observed previously. 相似文献
17.
Opoku Yeboah Kwaku Liu Zhihang Afrifa Justice Khoso Mir Hassan Ren Guiping Li Deshan 《International journal of peptide research and therapeutics》2020,26(1):107-119
International Journal of Peptide Research and Therapeutics - Fibroblast growth factor-21 (FGF21) is a member of the family of fibroblast growth factors (FGFs). FGF21 (synthesized by many organs)... 相似文献
18.
Youli Hu Scott E. Guimond Paul Travers Steven Cadman Erhard Hohenester Jeremy E. Turnbull Soo-Hyun Kim Pierre-Marc Bouloux 《The Journal of biological chemistry》2009,284(43):29905-29920
Activation of fibroblast growth factor (FGF) signaling is initiated by a multiprotein complex formation between FGF, FGF receptor (FGFR), and heparan sulfate proteoglycan on the cell membrane. Cross-talk with other factors could affect this complex assembly and modulate the biological response of cells to FGF. We have previously demonstrated that anosmin-1, a glycosylated extracellular matrix protein, interacts with the FGFR1 signaling complex and enhances its activity in an IIIc isoform-specific and HS-dependent manner. The molecular mechanism of anosmin-1 action on FGFR1 signaling, however, remains unknown. Here, we show that anosmin-1 directly binds to FGFR1 with high affinity. This interaction involves domains in the N terminus of anosmin-1 (cysteine-rich region, whey acidic protein-like domain and the first fibronectin type III domain) and the D2–D3 extracellular domains of FGFR1. In contrast, anosmin-1 binds to FGFR2IIIc with much lower affinity and displays negligible binding to FGFR3IIIc. We also show that FGFR1-bound anosmin-1, although capable of binding to FGF2 alone, cannot bind to a FGF2·heparin complex, thus preventing FGFR1·FGF2·heparin complex formation. By contrast, heparin-bound anosmin-1 binds to pre-formed FGF2·FGFR1 complex, generating an anosmin-1·FGFR1·FGF2·heparin complex. Furthermore, a functional interaction between anosmin-1 and the FGFR1 signaling complex is demonstrated by immunofluorescence co-localization and Transwell migration assays where anosmin-1 was shown to induce opposing effects during chemotaxis of human neuronal cells. Our study provides molecular and cellular evidence for a modulatory action of anosmin-1 on FGFR1 signaling, whereby binding of anosmin-1 to FGFR1 and heparin can play a dual role in assembly and activity of the ternary FGFR1·FGF2·heparin complex.FGF5 signaling plays an important role in a wide range of fundamental biological responses (1–3). Both FGF and FGFR bind to heparan sulfate (HS) and heparin, a highly sulfated type of HS produced in connective tissue mast cells. Heparan sulfate proteoglycans (HSPG) are the cell surface co-receptors essential for the formation of functional FGF·FGFR signaling complex (4, 5). There are four structurally related FGFRs (FGFR1–4), which consist of an extracellular ligand-binding region containing three immunoglobulin (Ig)-like domains (D1–D3), a single transmembrane domain, and a cytoplasmic domain with protein-tyrosine kinase catalytic activity. The 22 members of the FGF family bind to the interface formed by the D2/D3 domains and the linker between these domains (6, 7), whereas a conserved positively charged region in D2 serves as the HS binding site (8). An unusual stretch of seven to eight acidic residues designated as the “acid box” is present in the linker connecting D1 and D2. Alternative splicing events occur to generate various isoforms, including a truncated receptor lacking D1 and the D1–D2 linker or a full-length receptor that differs in the second half of D3, designated as IIIb and IIIc isoforms (5). Two crystal structures have been proposed to demonstrate how the FGF·FGFR·heparin complex is assembled (9, 10). Recent evidence suggests that both may be biologically relevant (11, 12).The diversity of FGF signaling pathways and consequent biological functions require that activation of FGFR should be tightly regulated. Such regulation can occur either at the level of the extracellular receptor-ligand complex assembly or via intracellular modulation of downstream effectors (13). Extracellular regulation mainly involves the interaction between each component of the FGF·FGFR·HS signaling complex. For example, FGF8 is shown to bind mostly to the FGFR IIIc isoforms, whereas FGF7 acts as the preferential ligand for the FGFR2 IIIb isoform (13, 14). Sequence specificity, length, and sulfation patterns of HS are also important regulators of the FGF·FGFR interaction (15, 16).Cell surface proteins other than FGFs and HSPGs participate in FGFR signaling regulation. FLRT3 (a member of the fibronectin-leucine-rich transmembrane protein family) promotes FGF signaling and interacts with FGFR1 and FGFR4 via its extracellular fibronectin type III (FnIII) domain (17). Sef (similar expression to fgf genes) functions as an antagonist of FGF signaling in zebrafish. The two FnIII regions of Sef are essential for its function and interaction with FGFR1 and FGFR2 (18). Neuronal cell adhesion molecule (NCAM), N-cadherin, and L1 have also been identified as functionally relevant in FGFR-mediated neurite outgrowth (19–22). The FnIII domains of NCAM bind to the D2 and D3 domains of FGFR1 (19) and FGFR2 (23) to induce ligand-independent receptor phosphorylation.Anosmin-1, an extracellular matrix-associated glycosylated protein, appears to be a novel member of the extracellular FGFR signaling modulators (24, 25). Loss-of-function mutations of anosmin-1 and FGFR1 are associated with Kallmann syndrome (KS), underlying X-linked, and autosomal dominant/recessive inheritance mode, respectively (26–28). KS is a human developmental genetic disorder characterized by loss of sense of smell (anosmia) caused by abnormal olfactory bulb development and delayed, even arrested puberty caused by disrupted migration of the gonadotropin-releasing hormone (GnRH)-secreting neuron. We previously reported that anosmin-1 acts as an FGFR1IIIc isoform-specific co-ligand, which enhances signaling activity. In human embryonic GnRH olfactory neuroblast FNC-B4 cells, anosmin-1 induced neurite outgrowth and cytoskeletal rearrangements through FGFR1-dependent mechanisms involving p42/44 and p38 mitogen-activated protein kinases and Cdc42/Rac1 activation (25). A functional interaction is also demonstrable between anosmin-1 and FGFR1 in optic nerve oligodendrocyte precursor development (24). Structurally, anosmin-1 comprises an N-terminal cysteine-rich domain (CR) and a whey acidic protein-like (WAP) domain, followed by four tandem FnIII repeats and a C-terminal histidine rich region (Fig. 1a). Current evidence suggests that anosmin-1 functions by affecting FGF2-induced activation of FGFR1 signaling rather than by directly stimulating the receptor. However, the precise molecular mechanism of this interaction remains unclear.Open in a separate windowFIGURE 1.Generation of recombinant anosmin-1, anosmin-1 mutants, FGFR1D1D3, and FGFR1D2D3 proteins. a, the schematic structures of recombinant proteins of anosmin-1 and FGFR1. Each domain in the wild type (PIWF4), point mutants (mPIWF4N267K, mPIWF4E514K, and mPIWF4F517L), and truncated (PIWF1, PIWF2, and PIF4) anosmin-1 protein analogues are represented by a shaded rectangle. V5 and 6His epitopes at the C terminus are represented by a clear rectangle. Each immunoglobulin-like domain in the full ectodomain (FGFR1D1D3) and truncated form (FGFR1D2D3) of FGFR1 is represented by a half circle. The acid box (AB) is represented by a filled rectangle. H, histidine-rich region. b, 0.5–1 μg of purified recombinant proteins are loaded in each lane and visualized by colloidal blue staining. Molecular mass markers in kilodaltons are shown on the left.We now report for the first time that anosmin-1 directly binds to FGFR1 using surface plasmon resonance (SPR), chemical cross-linking, and immunofluorescence co-localization studies in living cells. This interaction occurs between the N-terminal CR, WAP, and the first FnIII domain of anosmin-1 and D2 and D3 ectodomains of FGFR1. Moreover, SPR studies using sequential injections and Transwell migration assays in immortalized FNC-B4-hTERT cells suggest that anosmin-1 can have opposing effects in the formation and activation of the FGF2·FGFR1·heparin complex depending on the order of their binding interactions with anosmin-1. 相似文献
19.
Seema Nayak Madhu Mati Goel Annu Makker Vikram Bhatia Saumya Chandra Sandeep Kumar S. P. Agarwal 《PloS one》2015,10(10)
There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP. 相似文献
20.
《Endocrine practice》2023,29(3):193-198
ObjectiveEvaluation of circulating fibroblast growth factor 23 (FGF23) concentrations plays a key role in the differential diagnosis of patients presenting with hypophosphatemia. FGF23 concentrations obtained by different immunoassays are not comparable and subsequently, differences in the clinical performance of the assays might arise. In this study, we evaluated the clinical performance of the Medfrontier FGF23 Intact immunoassay (MedFrontier, Minaris Medical Co, Ltd, Tokyo, Japan) in clinically relevant hypophosphatemic conditions.MethodsIntact FGF23 (iFGF23) was measured in serum samples from 61 patients with FGF23-dependent hypophosphatemia (42-tumor induced osteomalacia [TIO] and 19-X-linked hypophosphatemia [XLH]); 8 patients with FGF23-independent hypophosphatemia (6-Fanconi Syndrome and 2-Vitamin D dependent rickets); 10 normophosphatemic patients; 15 chronic kidney disease (CKD) stage-2/3 and 20 CKD stage-4/5 patients; and a healthy control population. Disease-specific differences in measured iFGF23 concentrations and FGF23 concentration association with phosphate concentrations were reported.ResultsiFGF23 concentrations were significantly elevated in 90% and 84% of TIO and XLH hypophosphatemia patients as compared to healthy controls (both TIO and XLH, P = .0001). There was no significant correlation between iFGF23 and phosphate concentrations (P = .74 and P = .86) for TIO and XLH, respectively. Patients with CKD showed a significant increase in serum iFGF23 as the estimated glomerular filtration rate decreased (ρ = -0.79, P ≤ 0.0001).ConclusionsThis study evaluated the clinical performance of the MedFrontier iFGF23 assay in a large cohort of XLH and TIO Caucasian and Asian patients. The clinical sensitivity of this iFGF23 assay is appropriate for clinical use. 相似文献