首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Xin and nebulette are striated muscle-specific actin-binding proteins that both contain multiple actin-binding repeats. The nature of these repeats is different: nebulette has nebulin-like repeats, while Xin contains its own unique repeats. However, the suggestion was made from biochemical data that the Xin-repeats may bind to multiple sites on the actin molecule as was found for nebulin. We have used electron microscopy and the iterative helical real space reconstruction to visualize complexes of F-actin with Xin fragments containing either three or six Xin-repeats, and with the CN5-nebulette fragment, containing five nebulin-like repeats. Our results indicate that Xin and nebulette fragments bind to F-actin in a similar manner and in two distinct modes: in one mode actin subdomain 1 is bound, while in the second mode the binding bridges between a different site on actin subdomains 1/2 of one protomer and subdomains 3/4 of an adjacent actin protomer. Taken together with published data about nebulin, tropomyosin and ADF/cofilin, our results suggest that the ability to bind in multiple modes to the actin protomer is a general property of many actin-binding proteins.  相似文献   

2.
To evaluate nebulette's role in cardiac myofibrils, cardiomyocytes expressing green fluorescent protein (GFP)-nebulette constructs were monitored for their ability to contract and myofilament protein distribution was analyzed. Cells expressing full-length GFP-nebulette appear unaffected and exhibit normal beating frequencies. Expression of the GFP linker and SH3 results in loss of the endogenous nebulette and tropomyosin; however, Z-line and thick filaments are undisturbed. Cells expressing either of these domains have dramatically reduced beating frequencies, consistent with the loss of thin filament proteins. This loss was inhibited by the addition of protease inhibitors during culturing. The GFP repeat domain disrupts both myofibrillogenesis and contraction in spreading cardiomyocytes, whereas introduction of this protein into well-spread cardiomyocytes results in localization at the Z-line and a 50% reduction in beating frequency. Ultimately, these cells form bundles containing the GFP repeat and many myofilament proteins. Interestingly, butanedione monoxime inhibition of contraction inhibited the formation of these bundles. These results show that the GFP-nebulette domains have a dominant-negative effect on the distribution and function of the sarcomeric proteins. Taken together with the observation that nebulette colocalizes with alpha-actinin in the pre-, nascent, and mature myofibrils, our data demonstrate the importance of this cardiac-specific nebulin isoform in myofibril organization and function.  相似文献   

3.
The actin-binding proteins, nebulette, and nebulin, are comprised of a four-domain layout containing an acidic N-terminal region, a repeat domain, a serine-rich-linker region, and a Src homology-3 domain. Both proteins contain homologous N-terminal regions that are predicted to be in different environments within the sarcomere. The nebulin acidic N-terminal region is found at the distal ends of the thin filaments. Nebulette, however, is predicted to extend 150 nm from the center of the Z-line. To dissect out the functions of the N-terminal domain of nebulette, we have performed a yeast two-hybrid screen using nebulette residues 1-86 as bait. We have identified filamin-C, ZASP-1, and tropomyosin-1 as binding partners. Characterization of the nebulette-filamin interaction indicates that filamin-C predominantly interacts with the modules. These data suggest that filamin-C, a known component of striated muscle Z-lines, interacts with nebulette modules.  相似文献   

4.
Lasp-1 and lasp-2 are actin-binding proteins that contain a LIM domain, two nebulin repeats and an SH3 domain with significant identity. We determined the chromosomal locations of the LASP1 and LASP2 genes in chicken by fluorescence in situ hybridization. The LASP1 gene was localized to a pair of microchromosomes and the LASP2 gene was localized to chromosome 2p3.1, indicating that the chromosomal locations of the LASP1 and LASP2 genes are highly conserved between chicken and human. The comparison of genomic and cDNA sequences of chicken lasp-2 and nebulette, a nebulin-related protein in muscle, suggested that both the corresponding mRNAs shared exons in the same manner as their human homologues. When compared with the domain structure of nebulette, another nebulin repeat was predicted for lasp-2, and all the nebulin repeats of lasp-2 were better conserved than those in nebulette. We also found the exon boundaries in nebulin repeats of lasp-2 were similar to those of other nebulin-related proteins.  相似文献   

5.
The nebulin family of actin-binding proteins plays an essential role in cytoskeletal dynamics and actin filament stability. All of the family members are modular proteins with their key defining structural feature being the presence of the 35-residue nebulin modules. The family members now include nebulin, nebulette, N-RAP, LASP-1, and LIM-nebulette. Nebulin and nebulette are associated with the thin filament/Z-line junction of striated muscle. LASP-1 and LIM-nebulette are found within focal adhesions, and N-RAP is associated with muscle cellular junctions. Although much investigation has focused on the role of the interactions between nebulin modules and actin, each of these proteins contains other domains that are essential for their cellular targeting and functions. The serine-rich linker region of nebulette has previously been shown to serve just such a purpose by targeting the association of the nebulin modules to the cardiac Z-line in cultured cardiomyocytes. In this report, we analyze the targeting functions of the homologous regions of LASP-1 and LIM-nebulette in their incorporation into focal adhesions. We have found that the linker region of LASP-1 is indeed important for its cellular localization and that the shortened linker region of LIM-nebulette drives the association of nebulin modules to focal adhesions. This work was supported by grants from the National Institutes of Health-HLB and the National Council of the American Heart Association to C.L.M.  相似文献   

6.
Nebulin (600-900 kDa) and nebulette (107-109 kDa) are two homologous thin filament-associated proteins in skeletal and cardiac muscles, respectively. Both proteins are capped with a unique region at the amino terminus as well as a serine-rich linker domain and SH3 domains at the COOH terminus. Their significant size difference is attributed to the length of the central region wherein both proteins are primarily composed of approximately 35 amino acid repeats termed nebulin-like repeats or motifs. These motifs are marked by a conserved SXXXY sequence and high affinity binding to F-actin. To further characterize the effects that nebulin-like proteins may have on the striated muscle thin filament, we have cloned, expressed, and purified a five-motif chicken nebulette fragment and tested its interaction with the thin filament regulatory proteins. Both tropomyosin and troponin T individually bound the nebulette fragment, although the affinity of this interaction was significantly increased when tropomyosin-troponin T was tested as a binary complex. The addition of troponin I to the tropomyosin-troponin T complex decreased the binding to the nebulette fragment, indicating an involvement of the conserved T2 region of troponin T in this interaction. F-actin cosedimentation demonstrated that the nebulette fragment was able to significantly increase the affinity of the tropomyosin-troponin assembly for F-actin. The relationships provide a means for nebulin-like motifs to participate in the allosteric regulation of striated muscle contraction.  相似文献   

7.
Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle.  相似文献   

8.
Zyxin is a versatile component of focal adhesions in eukaryotic cells. Here we describe a novel binding partner of zyxin, which we have named LIM-nebulette. LIM-nebulette is an alternative splice variant of the sarcomeric protein nebulette, which, in contrast to nebulette, is expressed in non-muscle cells. It displays a modular structure with an N-terminal LIM domain, three nebulin-like repeats, and a C-terminal SH3 domain and shows high similarity to another cytoskeletal protein, Lasp-1 (LIM and SH3 protein-1). Co-precipitation studies and results obtained with the two-hybrid system demonstrate that LIM-nebulette and Lasp-1 interact specifically with zyxin. Moreover, the SH3 domain from LIM-nebulette is both necessary and sufficient for zyxin binding. The SH3 domains from Lasp-1 and nebulin can also interact with zyxin, but the SH3 domains from more distantly related proteins such as vinexin and sorting nexin 9 do not. On the other hand, the binding site in zyxin is situated at the extreme N terminus as shown by site-directed mutagenesis. LIM-nebulette and Lasp-1 use the same linear binding motif. This motif shows some similarity to a class II binding site but does not contain the classical PXXP sequence. LIM-nebulette reveals a subcellular distribution at focal adhesions similar to Lasp-1. Thus, LIM-nebulette, Lasp-1, and zyxin may play an important role in the organization of focal adhesions.  相似文献   

9.
Ma K  Wang K 《FEBS letters》2002,532(3):273-278
Skeletal muscle nebulin is thought to determine thin filament length and regulate actomyosin interaction in a calcium/calmodulin or S100 sensitive manner. We have investigated the binding of nebulin SH3 with proline-rich peptides derived from the 28-mer PEVK modules of titin and the Z-line protein myopalladin, using fluorescence, circular dichroism and nuclear magnetic resonance techniques. Of the six peptides studied, PR2 of titin (VPEKKAPVAPPK) and myopalladin MyoP2 (646VKEPPPVLAKPK657) bind to nebulin SH3 with micromolar affinity (approximately 31 and 3.4 microM, respectively), whereas the other four peptides bind weakly (>100 microM). Sequence analysis of titins reveals numerous SH3 binding motifs that are highly enriched in the PEVK segments of titin isoforms. Our findings suggest that titin PEVK and myopalladin may play signaling roles in targeting and orientating nebulin to the Z-line during sarcomere assembly.  相似文献   

10.
We describe here a novel sarcomeric 145-kD protein, myopalladin, which tethers together the COOH-terminal Src homology 3 domains of nebulin and nebulette with the EF hand motifs of alpha-actinin in vertebrate Z-lines. Myopalladin's nebulin/nebulette and alpha-actinin-binding sites are contained in two distinct regions within its COOH-terminal 90-kD domain. Both sites are highly homologous with those found in palladin, a protein described recently required for actin cytoskeletal assembly (Parast, M.M., and C.A. Otey. 2000. J. Cell Biol. 150:643-656). This suggests that palladin and myopalladin may have conserved roles in stress fiber and Z-line assembly. The NH(2)-terminal region of myopalladin specifically binds to the cardiac ankyrin repeat protein (CARP), a nuclear protein involved in control of muscle gene expression. Immunofluorescence and immunoelectron microscopy studies revealed that myopalladin also colocalized with CARP in the central I-band of striated muscle sarcomeres. Overexpression of myopalladin's NH(2)-terminal CARP-binding region in live cardiac myocytes resulted in severe disruption of all sarcomeric components studied, suggesting that the myopalladin-CARP complex in the central I-band may have an important regulatory role in maintaining sarcomeric integrity. Our data also suggest that myopalladin may link regulatory mechanisms involved in Z-line structure (via alpha-actinin and nebulin/nebulette) to those involved in muscle gene expression (via CARP).  相似文献   

11.
Nebulette is a cardiac-specific isoform of the giant actin-binding protein nebulin. Nebulette, having a mass of ∼ 100 kDa, is only predicted to extend 150 nm from the edge of the Z-lines. Overexpression of the nebulette C-terminal linker and/or SH3 domains in chicken cardiomyocytes results in a loss of endogenous nebulette with a concomitant loss of tropomyosin (TPM) and troponin, as well as a shortening of the thin filaments. These data suggest that nebulette's position in the sarcomere is important for the maintenance of TPM, troponin and thin filament length. To evaluate this hypothesis, N-terminal nested truncations tagged with GFP were expressed in chicken cardiomyocytes and the cells were analyzed for the distribution of myofilament proteins. Minimal effects on the myofilaments were observed with N-terminal deletions of up to 10 modules; however, deletion of 15 modules replicated the phenotype observed with expression of the C-terminal fragments. Expression of internal deletions of nebulette verifies that a site between module 10 and 15 is important for TPM maintenance within the sarcomeric lattice. We have additionally isolated TPM cDNAs from a yeast two hybrid (Y2H) analysis. These data indicate the importance of the nebulette-TPM interactions in the maintenance and stability of the thin filaments.  相似文献   

12.
The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.  相似文献   

13.
Nwe TM  Shimada Y 《Tissue & cell》2000,32(3):223-227
In order to examine the role of cytoskeletal scaffolding proteins, nebulin and connectin (titin), in actin dynamics during myofibrillogenesis, rhodamine (rh)-labeled actin was microinjected into cultured skeletal muscle cells in which the function of these proteins had been inhibited with their respective antibodies. In the nebulin function-inhibited cells, exogenously introduced actin formed irregularly distributed amorphous patches or bright foci inside the cells, but it was not incorporated into myofibrillar structures at any stage. Thus, the blockage of actin binding sites of nebulin seems to inhibit the association of actin monomers to the preexisting nebulin scaffold. In the cells inhibited with anti-connectin antibody, incorporation of rh-actin was similar to that in antibody-uninjected cells. These results support the idea that nebulin is related to the accessibility/exchangeability of actin into nascent myofibrils, but connectin does not have such a role in actin assembly. Since all antibodies recognizing different domains of nebulin filaments blocked actin incorporation along the entire length of actin filaments, inhibition of any domains of nebulin filaments seems to affect actin dynamics.  相似文献   

14.
Leiomodin (Lmod) is a muscle-specific F-actin–nucleating protein that is related to the F-actin pointed-end–capping protein tropomodulin (Tmod). However, Lmod contains a unique ∼150-residue C-terminal extension that is required for its strong nucleating activity. Overexpression or depletion of Lmod compromises sarcomere organization, but the mechanism by which Lmod contributes to myofibril assembly is not well understood. We show that Tmod and Lmod localize through fundamentally different mechanisms to the pointed ends of two distinct subsets of actin filaments in myofibrils. Tmod localizes to two narrow bands immediately adjacent to M-lines, whereas Lmod displays dynamic localization to two broader bands, which are generally more separated from M-lines. Lmod''s localization and F-actin nucleation activity are enhanced by interaction with tropomyosin. Unlike Tmod, the myofibril localization of Lmod depends on sustained muscle contraction and actin polymerization. We further show that Lmod expression correlates with the maturation of myofibrils in cultured cardiomyocytes and that it associates with sarcomeres only in differentiated myofibrils. Collectively, the data suggest that Lmod contributes to the final organization and maintenance of sarcomere architecture by promoting tropomyosin-dependent actin filament nucleation.  相似文献   

15.
Nebulin, a giant modular protein from muscle, is thought to act as a molecular ruler in sarcomere assembly. The C terminus of nebulin, located in the sarcomere Z-disk, comprises an SH3 domain, a module well known for its role in protein/protein interactions. SH3 domains are known to recognize proline-rich ligands, which have been classified as type I or type II, depending on their relative orientation with respect to the SH3 domain in the complex formed. Type I ligands are bound with their N terminus at the RT loop of the SH3 domain, while type II ligands are bound with their C terminus at the RT loop. Many SH3 domains can bind peptides of either class. Despite the potential importance of the SH3 domain for the function of nebulin as an integral part of a complex network of interactions, no in vivo partner has been identified so far. We have adopted an integrated approach, which combines bioinformatic tools with experimental validation to identify possible partners of nebulin SH3. Using the program SPOT, we performed an exhaustive screening of the muscle sequence databases. This search identified a number of potential nebulin SH3 partners, which were then tested experimentally for their binding affinity. Synthetic peptides were studied by both fluorescence and NMR spectroscopy. Our results show that nebulin SH3 domain binds selectively to type II peptides. The affinity for a type II peptide, 12 residues long, spanning the sequence of a stretch of titin known to colocalise with nebulin in the Z-disk is in the submicromolar range (0.7 microM). This affinity is among the highest found for SH3/peptide complexes, suggesting that the identified stretch could have significance in vivo. The strategy outlined here is of more general applicability and may provide a valuable tool to identify potential partners of SH3 domains and of other peptide-binding modules.  相似文献   

16.
Sarcomere assembly in striated muscles has long been described as a series of steps leading to assembly of individual proteins into thick filaments, thin filaments and Z-lines. Decades of previous work focused on the order in which various structural proteins adopted the striated organization typical of mature myofibrils. These studies led to the view that actin and α-actinin assemble into premyofibril structures separately from myosin filaments, and that these structures are then assembled into myofibrils with centered myosin filaments and actin filaments anchored at the Z-lines. More recent studies have shown that particular scaffolding proteins and chaperone proteins are required for individual steps in assembly. Here, we review the evidence that N-RAP, a LIM domain and nebulin repeat protein, scaffolds assembly of actin and α-actinin into I-Z-I structures in the first steps of assembly; that the heat shock chaperone proteins Hsp90 & Hsc70 cooperate with UNC-45 to direct the folding of muscle myosin and its assembly into thick filaments; and that the kelch repeat protein Krp1 promotes lateral fusion of premyofibril structures to form mature striated myofibrils. The evidence shows that myofibril assembly is a complex process that requires the action of particular catalysts and scaffolds at individual steps. The scaffolds and chaperones required for assembly are potential regulators of myofibrillogenesis, and abnormal function of these proteins caused by mutation or pathological processes could in principle contribute to diseases of cardiac and skeletal muscles.  相似文献   

17.
G Luo  A H Herrera  R Horowits 《Biochemistry》1999,38(19):6135-6143
N-RAP is a recently discovered muscle-specific protein that is concentrated at the myotendon junctions in skeletal muscle and at the intercalated disks in cardiac muscle. The C-terminal half of N-RAP contains a region with sequence homology to nebulin, while a LIM domain is found at its N-terminus. N-RAP is hypothesized to perform an anchoring function, linking the terminal actin filaments of myofibrils to protein complexes located beneath the sarcolemma. We used a solid-phase assay to screen myofibrillar and junctional proteins for binding to several recombinant fragments of N-RAP, including the nebulin-like super repeat region (N-RAP-SR), the N-terminal half including the LIM domain (N-RAP-NH), and the region of N-RAP between the super repeat region and the LIM domain (N-RAP-IB). Actin is the only myofibrillar protein tested that exhibits specific binding to N-RAP, with high-affinity binding to N-RAP super repeats, and 10-fold weaker binding to N-RAP-IB. In contrast, myosin, isolated myosin heads, tropomyosin, and troponin exhibited no specific interaction with N-RAP domains. A recombinant fragment corresponding to the C-terminal one-fourth of vinculin also binds specifically to N-RAP super repeats, while no specific N-RAP binding activity was observed for other regions of the vinculin molecule. Finally, talin binds with high affinity to the LIM domain of N-RAP. These results support our hypothesis that N-RAP is part of a complex of proteins that anchors the terminal actin filaments of the myofibril to the membrane, and functions in transmitting tension from the myofibrils to the extracellular matrix.  相似文献   

18.
The nebulin family of actin-binding proteins plays an important role in actin filament dynamics in a variety of cells including striated muscle. We report here the identification of a new striated muscle Z-disc associated protein: lasp-2 (LIM and SH3 domain protein-2). Lasp-2 is the most recently identified member of the nebulin family. To evaluate the role of lasp-2 in striated muscle, lasp-2 gene expression and localization were studied in chick and mouse tissue, as well as in primary cultures of chick cardiac and skeletal myocytes. Lasp-2 mRNA was detected as early as chick embryonic stage 25 and lasp-2 protein was associated with developing premyofibril structures, Z-discs of mature myofibrils, focal adhesions, and intercalated discs of cultured cardiomyocytes. Expression of GFP-tagged lasp-2 deletion constructs showed that the C-terminal region of lasp-2 is important for its localization in striated muscle cells. Lasp-2 organizes actin filaments into bundles and interacts directly with the Z-disc protein alpha-actinin. These results are consistent with a function of lasp-2 as a scaffolding and actin filament organizing protein within striated muscle Z-discs.  相似文献   

19.
Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.  相似文献   

20.
From eluates of F-actin affinity chromatography of chicken brain, we identified a novel actin-binding protein (lasp-2) whose gene was predicted in silico. We cloned cDNA of chicken lasp-2 and analyzed its structure, expression, activity, and localization with lasp-1 (LIM and SH3 protein 1), a previously identified actin-binding protein closely related to lasp-2. Chicken lasp-2 showed high homology to mammalian putative lasp-2. Both chicken lasp-1 and chicken lasp-2 have N-terminal LIM domains, C-terminal SH3 domains, and internal nebulin repeats. However, lasp-2 is greatly different from lasp-1 in the sequence between the second nebulin repeat and a SH3 domain, and the region is conserved in chicken, mouse, and human. As expected from its structural similarity to lasp-1, lasp-2 possessed actin-binding activity and localized with actin filament in filopodia of neuroblastoma. In contrast to lasp-1, which is widely distributed in non-muscle tissues, lasp-2 was highly expressed in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号