首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Jogaejeot, seasoned Venerupis philippinarum, is a traditional Korean fermented food, and hepatitis A virus (HAV) can be transmitted through contaminated food, especially bivalve shellfish, causing acute gastroenteritis worldwide. Here, we carried out a phylogenetic analysis to identify and characterize HAV strains in jogaejeot samples associated with hepatitis A (HA) outbreaks in Seoul, South Korea, in 2019. The HAV strains were identified using blast and molecular analysis of the amplified HAV VP1-P2B genome region. The HAV strains identified in the five jogaejeot samples shared at least 99% sequence identity, were all classified as genotype IA and were most closely related to strains that are widespread in East Asia. These results support a link between the consumption of jogaejeot and the HA outbreaks observed in 2019 in Seoul. In addition, they indicate a need for more stringent enforcement of food safety regulations for the shellfish industry, especially against HAV, and the value of widespread vaccination.  相似文献   

2.
In order to study the importance of VP4 in picornavirus replication and translation, we replaced the hepatitis A virus (HAV) VP4 with the poliovirus (PV1) VP4. Using a modification of oligonucleotide site directed mutagenesis and the polymerase chain reaction (PCR), we created a subgenomic cDNA chimera of hepatitis A virus in which the precise sequences coding for HAV VP4 capsid protein were replaced by the sequences coding for the poliovirus VP4 capsid protein. The method involved the use of PCR primers corresponding to the 3' and 5' ends of the poliovirus VP4 sequence and that had HAV VP4 3' and 5' flanking sequences on their 5'ends. Single stranded DNA of 240 and 242 nt containing the 204 nt coding for the complete poliovirus VP4 were produced by using a limiting amount of one of the primers in a PCR reaction. These single stranded PCR products were used like mutagenic oligonucleotides on a single stranded phagemid containing the first 2070 bases of the HAV genome. Using this technique, we precisely replaced the HAV VP4 gene by the poliovirus VP4 gene as determined by DNA sequencing. The cDNA was transcribed into RNA and translated in vitro. The resulting protein could be precipitated by antibody to poliovirus VP4 but not to HAV VP4.  相似文献   

3.
E A Brown  R W Jansen    S M Lemon 《Journal of virology》1989,63(11):4932-4937
PA21, a strain of hepatitis A virus (HAV) recovered from a naturally infected captive owl monkey, is indistinguishable from human HAV in polyclonal radioimmunoassays and cross-neutralization studies. However, cDNA-RNA hybridization has suggested a significant difference at the genomic level between PA21 and a reference human virus, HM175. Further characterization of this unique HAV was undertaken in an effort to determine the extent of genetic divergence from human HAV and its relation to the conserved antigenic structure of the virus. The close similarity between PA21 and HM175 antigens was confirmed with an extended panel of 18 neutralizing murine monoclonal antibodies: a reproducible difference in binding to the two viruses was detected with only one antibody (B5-B3). The nucleotide sequence of the P1 region of the PA21 genome had only 83.2% identity with HM175 virus, a difference approximately twice as great as that found between any two human strains. Most nucleotide changes were in third base positions, and the amino acid sequences of the capsid proteins were largely conserved. Amino acid replacements were clustered in the carboxy terminus of VP1 and the amino-terminal regions of VP2 and VP1. These data indicate that PA21 virus represents a unique genotype of HAV and suggest the existence of an ecologically isolated niche for HAV among feral owl monkeys.  相似文献   

4.
Hepatitis A virus (HAV) is a positive-stranded RNA virus in the genus Hepatovirus in the family Picornaviridae So far, analysis of the genetic variability of HAV has been based on two discrete regions, the VP1/2A junction and the VP1 N terminus. In this report, we determined the nucleotide and deduced amino acid sequences of the complete VP1 gene of 81 strains from France, Kosovo, Mexico, Argentina, Chile, and Uruguay and compared them with the sequences of seven strains of HAV isolated elsewhere. Overall strain variation in the complete VP1 gene was found to be as high as 23.7% at the nucleotide level and 10.5% at the amino acid level. Different phylogenetic methods revealed that HAV sequences form five distinct and well-supported genetic lineages. Within these lineages, HAV sequences clustered by geographical origin only for European strains. The analysis of the complete VP1 gene allowed insight into the mode of evolution of HAV and revealed the emergence of a novel variant with a 15-amino-acid deletion located on the VP1 region where neutralization escape mutations were found. This could be the first antigenic variant of HAV so far identified.  相似文献   

5.
Genetic analysis of hepatitis B virus (HBV) frequently involves study of intra-host variants, identification of which is commonly achieved using short regions of the HBV genome. However, the use of short sequences significantly limits evaluation of genetic relatedness among HBV strains. Although analysis of HBV complete genomes using genetic cloning has been developed, its application is highly labor intensive and practiced only infrequently. We describe here a novel approach to whole genome (WG) HBV quasispecies analysis based on end-point, limiting-dilution real-time PCR (EPLD-PCR) for amplification of single HBV genome variants, and their subsequent sequencing. EPLD-PCR was used to analyze WG quasispecies from serum samples of patients (n = 38) infected with HBV genotypes A, B, C, D, E and G. Phylogenetic analysis of the EPLD-isolated HBV-WG quasispecies showed the presence of mixed genotypes, recombinant variants and sub-populations of the virus. A critical observation was that HBV-WG consensus sequences obtained by direct sequencing of PCR fragments without EPLD are genetically close, but not always identical to the major HBV variants in the intra-host population, thus indicating that consensus sequences should be judiciously used in genetic analysis. Sequence-based studies of HBV WG quasispecies should afford a more accurate assessment of HBV evolution in various clinical and epidemiological settings.  相似文献   

6.

Background

Foodborne Hepatitis A Virus (HAV) outbreaks are being recognized as an emerging public health problem in industrialized countries. In 2013 three foodborne HAV outbreaks occurred in Europe and one in USA. During the largest of the three European outbreaks, most cases occurred in Italy (>1,200 cases as of March 31, 2014). A national Task Force was established at the beginning of the outbreak by the Ministry of Health. Mixed frozen berries were early demonstrated to be the source of infection by the identity of viral sequences in patients and in food. In the present study the molecular characterization of HAV isolates from 355 Italian cases is reported.

Methods

Molecular characterization was carried out by PCR/sequencing (VP1/2A region), comparison with reference strains and phylogenetic analysis.

Results

A unique strain was responsible for most characterized cases (235/355, 66.1%). Molecular data had a key role in tracing this outbreak, allowing 110 out of the 235 outbreak cases (46.8%) to be recognized in absence of any other link. The data also showed background circulation of further unrelated strains, both autochthonous and travel related, whose sequence comparison highlighted minor outbreaks and small clusters, most of them unrecognized on the basis of epidemiological data. Phylogenetic analysis showed most isolates from travel related cases clustering with reference strains originating from the same geographical area of travel.

Conclusions

In conclusion, the study documents, in a real outbreak context, the crucial role of molecular analysis in investigating an old but re-emerging pathogen. Improving the molecular knowledge of HAV strains, both autochthonous and circulating in countries from which potentially contaminated foods are imported, will become increasingly important to control outbreaks by supporting trace back activities, aiming to identify the geographical source(s) of contaminated food, as well as public health interventions.  相似文献   

7.
Investigation of hepatitis A (HA) outbreak developed in 2005 among workers of food stores networkwas performed using conventional epidemiologic diagnostics as well as methods of molecular epidemiology. In 14 of 15 ill persons, using polymerase chain reaction, HAV RNA was detected by PCR in serum obtained on 2 - 25 day of illness (mean - 9.3 days). In 10 cases it was possible to determine nucleotide sequence of VP1/VP2 region of HAV genome and perform phylogenetic analysis of obtained isolates. It was determined that all isolates belonged to subgenotype IA, had high degree of homology and grouped in one cluster. These findings demonstrate their descendance from one source of infection, which, with high degree of probability, was the cook who made salads from fresh vegetables. HAV strain, which caused this epidemic outbreak circulates in Saint Petersburg for a long time and was already detected in 2004. Importance of vaccination against HA for persons working in manufacturing and distribution of food and use of molecular epidemiologic methods of surveillance for this infection is underlined.  相似文献   

8.
Milligram amounts of highly purified hepatitis A virus (HAV) were obtained from persistently infected cell cultures. The HAV polypeptides were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose for detection by an enzyme-linked immunotransfer blot procedure. The HAV nucleotide-derived amino acid sequence was subjected to computer analysis to identify potential immunogenic regions within the HAV capsid polypeptides. Synthetic peptides corresponding to selected regions of each of the larger putative capsid polypeptides were coupled to keyhole limpet hemocyanin and used to immunize rabbits. Four of six anti-HAV peptide sera were strongly reactive. Antipeptide serum generated against amino acids (a.a.) 75 through 82 reacted with the 27,000-molecular-weight (MW) polypeptide; serum against a.a. 279 through 285 reacted with the 29,000-MW HAV polypeptide; and sera against a.a. 591 through 602 and 606 through 618 reacted with the 33,000-MW HAV polypeptide. These reactions enabled the identification of the gene order of the larger HAV P1 region gene products. Our data indicate the following molecular weights: HAV VP2 or 1B, 27,000; HAV VP3 or 1C, 29,000; and HAV VP1 or 1D, 33,000.  相似文献   

9.
Enteroviruses are members of the family Picornaviridae that cause widespread infections in human and other mammalian populations. Enteroviruses are genetically and antigenically highly variable, and recombination within and between serotypes contributes to their genetic diversity. To investigate the dynamics of the recombination process, sequence phylogenies between three regions of the genome (VP4, VP1, and 3Dpol) were compared among species A and B enterovirus variants detected in a human population-based survey in Scotland between 2000 and 2001, along with contemporary virus isolates collected in the same geographical region. This analysis used novel bioinformatic methods to quantify phylogenetic compatibility and correlations with serotype assignments of evolutionary trees constructed for different regions of the enterovirus genome. Species B enteroviruses showed much more frequent, time-correlated recombination events than those found for species A, despite the equivalence in population sampling, concordant with a linkage analysis of previously characterized enterovirus sequences obtained over longer collection periods. An analysis of recombination among complete genome sequences by computation of a phylogenetic compatibility matrix (PCM) demonstrated sharply defined boundaries between the VP2/VP3/VP1 block and sequences to either side in phylogenetic compatibility. The PCM also revealed equivalent or frequently greater degrees of incompatibility between different parts within the nonstructural region (2A-3D), indicating the occurrence of extensive recombination events in the past evolution of this part of the genome. Together, these findings provide new insights into the dynamics of species A and B enterovirus recombination and evolution and into the contribution of structured sampling to documenting reservoirs, emergence, and spread of novel recombinant forms in human populations.  相似文献   

10.
Enterovirus 68 (EVD68) causes respiratory illness, mostly in children. Despite a reported low-level of transmission, the occurrence of several recent outbreaks worldwide including the 2014 outbreak in North America has raised concerns regarding the pathogenesis and evolution of EVD68. To elucidate the phylogenetic features of EVD68 and possible causes for the 2014 outbreak, 216 EVD68 strain sequences were retrieved from Genbank, including 22 from the 2014 outbreak. Several geographic and genotypic origins were established for these 22 strains, 19 of which were classified as Clade B. Of these 19 strains, 17 exhibited subsequent clustering and variation in protein residues involved in host-receptor interaction and/or viral antigenicity. Approximately 18 inter-clade variations were detected in VP1, which led to the identification of a new Clade D in EVD68 strains. The classification of this new clade was also verified by the re-construction of a Neighbor-Joining tree during the phylogenetic analysis. In addition, our results indicate that members of Clade B containing highly specific alterations in VP1 protein residues were the foremost contributors to the 2014 outbreak in the US. Altered host-receptor interaction and/or host immune recognition may explain the evolution of EVD68 as well as the global emergence and ongoing adaptation of this virus.  相似文献   

11.
An outbreak of acute hepatitis A virus in North Carolina was linked to drinking water from a contaminated shallow spring by phylogenetic analysis of hepatitis A virus (HAV) genomic sequences. Detection of HAV and fecal indicators in the water provided useful and timely information to assist with public health prevention and control measures.  相似文献   

12.
Porcine epidemic diarrhea virus (PEDV) is a positive-sense RNA virus that causes infectious gastroenteritis in pigs. Following a PED outbreak that occurred in China in 2010, the disease was identified for the first time in the United States in April 2013, and was reported in many other countries worldwide from 2013 to 2014. As a novel approach to elucidate the epidemiological relationship between PEDV strains, we explored their genome sequences to identify the motifs that were shared within related strains. Of PED outbreaks reported in many countries during 2013–2014, 119 PEDV strains in Japan, USA, Canada, Mexico, Germany, and Korea were selected and used in this study. We developed a motif mining program, which aimed to identify a specific region of the genome that was exclusively shared by a group of PEDV strains. Eight motifs were identified (M1–M8) and they were observed in 41, 9, 18, 6, 10, 14, 2, and 2 strains, respectively. Motifs M1–M6 were shared by strains from more than two countries, and seemed to originate from one PEDV strain, Indiana12.83/USA/2013, among the 119 strains studied. BLAST search for motifs M1–M6 revealed that M3–M5 were almost identical to the strain ZMDZY identified in 2011 in China, while M1 and M2 were similar to other Chinese strains isolated in 2011–2012. Consequently, the PED outbreaks in these six countries may be closely related, and multiple transmissions of PEDV strains between these countries may have occurred during 2013–2014. Although tools such as phylogenetic tree analysis with whole genome sequences are increasingly applied to reveal the connection between isolates, its interpretation is sometimes inconclusive. Application of motifs as a tool to examine the whole genome sequences of causative agents will be more objective and will be an explicit indicator of their relationship.  相似文献   

13.
The genetic stability of selected epidemiologically linked strains of Campylobacter jejuni during outbreak situations was investigated by using subtyping techniques. Strains isolated from geographically related chicken flock outbreaks in 1998 and from a human outbreak in 1981 were investigated. There was little similarity in the strains obtained from the different chicken flock outbreaks; however, the strains from each of three chicken outbreaks, including strains isolated from various environments, were identical as determined by fla typing, amplified fragment length polymorphism (AFLP) analysis, and pulsed-field gel electrophoresis, which confirmed the genetic stability of these strains during the short time courses of chicken flock outbreaks. The human outbreak samples were compared with strain 81116, which originated from the same outbreak but has since undergone innumerable laboratory passages. Two main AFLP profiles were recognized from this outbreak, which confirmed the serotyping results obtained at the time of the outbreak. The major type isolated from this outbreak (serotype P6:L6) was exemplified by strain 81116. Despite the long existence of strain 81116 as a laboratory strain, the AFLP profile of this strain was identical to the profiles of all the other historical P6:L6 strains from the outbreak, indicating that the genotype has remained stable for almost 20 years. Interestingly, the AFLP profiles of the P6:L6 group of strains from the human outbreak and the strains from one of the recent chicken outbreaks were also identical. This similarity suggests that some clones of C. jejuni remain genetically stable in completely different environments over long periods of time and considerable geographical distances.  相似文献   

14.

Background

Clinical manifestations of enterovirus 71 (EV71) range from herpangina, hand-foot-and-mouth disease (HFMD), to severe neurological complications. Unlike the situation of switching genotypes seen in EV71 outbreaks during 1998–2008 in Taiwan, genotype B5 was responsible for two large outbreaks in 2008 and 2012, respectively. In China, by contrast, EV71 often persists as a single genotype in the population and causes frequent outbreaks. To investigate genetic changes in viral evolution, complete EV71 genome sequences were used to analyze the intra-genotypic evolution pattern in Taiwan, China, and the Netherlands.

Results

Genotype B5 was predominant in Taiwan’s 2008 outbreak and was re-emergent in 2012. EV71 strains from both outbreaks were phylogenetically segregated into two lineages containing fourteen non-synonymous substitutions predominantly in the non-structural protein coding region. In China, genotype C4 was first seen in 1998 and caused the latest large outbreak in 2008. Unlike shifting genotypes in Taiwan, genotype C4 persisted with progressive drift through time. A majority of non-synonymous mutations occurred in residues located in the non-structural coding region, showing annual increases. Interestingly, genotype B1/B2 in the Netherlands showed another stepwise evolution with dramatic EV71 activity increase in 1986. Phylogeny of the VP1 coding region in 1971–1986 exhibited similar lineage turnover with genotype C4 in China; however, phylogeny of the 3D-encoding region indicated separate lineage appearing after 1983, suggesting that the 3D-encoding region of genotype B2 was derived from an unidentified ancestor that contributed to intra-genotypic evolution in the Netherlands.

Conclusions

Unlike VP1 coding sequences long used for phylogenetic study of enteroviruses due to expected host immune escape, our study emphasizes a dominant role of non-synonymous mutations in non-structural protein regions that contribute to (re-)emergent genotypes in continuous stepwise evolution. Dozens of amino acid substitutions, especially in non-structural proteins, were identified via genetic changes driven through intra-genotypic evolution worldwide. These identified substitutions appeared to increase viral fitness in the population, affording valuable insights not only for viral evolution but also for prevention, control, and vaccine against EV71 infection.  相似文献   

15.
中国五省市甲型肝炎病毒基因分型的研究   总被引:9,自引:0,他引:9  
为了解甲型肝炎(甲肝)病毒(HAV)在中国几个城市的基因型分布,选择浙江杭州、江苏启东、安徽铜陵、云南昆明和上海市等的甲肝病人粪便标本或血清标本,以逆转录-套式聚合酶链反应(RT-nPCR)扩增合成HAV VP1/2A交接区基因区,并进行直接核苷酸序列分析和差异比较。结果表明,从这些城市甲肝病人分离到的17株HAV株均属基因Ⅰ型,为IA和IB亚型;所有HAV株间核苷酸差异均小于15%,但约50%H  相似文献   

16.
Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome (‘whole genome’) sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68’s rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.  相似文献   

17.
18.
Cloned cDNA probes derived from the P1 and P2 regions of the genome of HM175 virus, a reference strain of human hepatitis A virus (HAV), failed to hybridize under standard stringency criteria with RNA from PA21 and PA33 viruses, two epizootiologically related HAV strains recovered from naturally infected New World owl monkeys. Hybridization of these probes to PA21 RNA was only evident under reduced stringency conditions. However, cDNA representing the 5' nontranslated region of the HM175 genome hybridized equally to HM175 and PA21 RNA under standard stringency conditions, while a probe derived from the 3' 1,400 bases of the genome yielded a reduced hybridization signal with PA21 RNA. In contrast, no differences could be discerned between HM175 virus and three other HAV strains of human origin (GR8, LV374, and MS1) in any region of the genome, unless increased stringency conditions were used. These results suggest that PA21 and PA33 are unique among HAV isolates and may represent a virus native to the owl monkey. Despite extremely poor homology within the P1 region, which encodes capsid polypeptides, monoclonal antibody analysis confirmed that the immunodominant neutralization epitopes of HAV were highly conserved between HM175 and PA21 viruses. Furthermore, experimental challenge of the owl monkey with successive PA33 and HM175 inocula confirmed a high but incomplete degree of cross-protection. Only one of six monkeys previously infected with PA33 developed recurrent hepatitis 28 days after intravenous HM175 challenge, while none of six monkeys previously infected with HM175 had demonstrable hepatitis following PA33 challenge. These data provide molecular evidence for the existence of HAV strains unique to nonhuman primate species and indicate that strict conservation of antigenic function may accompany substantial genetic divergence in HAV.  相似文献   

19.
Evidence for a Genetically Stable Strain of Campylobacter jejuni   总被引:1,自引:0,他引:1       下载免费PDF全文
The genetic stability of selected epidemiologically linked strains of Campylobacter jejuni during outbreak situations was investigated by using subtyping techniques. Strains isolated from geographically related chicken flock outbreaks in 1998 and from a human outbreak in 1981 were investigated. There was little similarity in the strains obtained from the different chicken flock outbreaks; however, the strains from each of three chicken outbreaks, including strains isolated from various environments, were identical as determined by fla typing, amplified fragment length polymorphism (AFLP) analysis, and pulsed-field gel electrophoresis, which confirmed the genetic stability of these strains during the short time courses of chicken flock outbreaks. The human outbreak samples were compared with strain 81116, which originated from the same outbreak but has since undergone innumerable laboratory passages. Two main AFLP profiles were recognized from this outbreak, which confirmed the serotyping results obtained at the time of the outbreak. The major type isolated from this outbreak (serotype P6:L6) was exemplified by strain 81116. Despite the long existence of strain 81116 as a laboratory strain, the AFLP profile of this strain was identical to the profiles of all the other historical P6:L6 strains from the outbreak, indicating that the genotype has remained stable for almost 20 years. Interestingly, the AFLP profiles of the P6:L6 group of strains from the human outbreak and the strains from one of the recent chicken outbreaks were also identical. This similarity suggests that some clones of C. jejuni remain genetically stable in completely different environments over long periods of time and considerable geographical distances.  相似文献   

20.
The complete nucleotide sequence of wild-type hepatitis A virus (HAV) HM-175 was determined. The sequence was compared with that of a cell culture-adapted HAV strain (R. Najarian, D. Caput, W. Gee, S.J. Potter, A. Renard, J. Merryweather, G.V. Nest, and D. Dina, Proc. Natl. Acad. Sci. USA 82:2627-2631, 1985). Both strains have a genome length of 7,478 nucleotides followed by a poly(A) tail, and both encode a polyprotein of 2,227 amino acids. Sequence comparison showed 624 nucleotide differences (91.7% identity) but only 34 amino acid differences (98.5% identity). All of the dipeptide cleavage sites mapped in this study were conserved between the two strains. The sequences of these two HAV strains were compared with the partial sequences of three other HAV strains. Most amino acid differences were located in the capsid region, especially in VP1. Whereas changes in amino acids were localized to certain portions of the genome, nucleotide differences occurred randomly throughout the genome. The most extensive nucleotide homology between the strains was in the 5' noncoding region (96% identity for cell culture-adapted strains versus wild type; greater than 99% identity among cell culture-adapted strains). HAV proteins are less homologous with those of any other picornavirus than the latter proteins are when compared with each other. When the sequences of wild-type and cell culture-adapted HAV strains are compared, the nucleotide differences in the 5' noncoding region and the amino acid differences in the capsid region suggest areas that may contain markers for cell culture adaptation and for attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号