首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-d-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B′ subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp553 and Asp665 are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite −1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase.  相似文献   

2.
Carnitine palmitoyltransferase (CPT) I catalyzes the conversion of long-chain fatty acyl-CoAs to acyl carnitines in the presence of l-carnitine, a rate-limiting step in the transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix. To determine the role of the 15 cysteine residues in the heart/skeletal muscle isoform of CPTI (M-CPTI) on catalytic activity and malonyl-CoA sensitivity, we constructed a 6-residue N-terminal, a 9-residue C-terminal, and a 15-residue cysteineless M-CPTI by cysteine-scanning mutagenesis. Both the 9-residue C-terminal mutant enzyme and the complete 15-residue cysteineless mutant enzyme are inactive but that the 6-residue N-terminal cysteineless mutant enzyme had activity and malonyl-CoA sensitivity similar to those of wild-type M-CPTI. Mutation of each of the 9 C-terminal cysteines to alanine or serine identified a single residue, Cys-305, to be important for catalysis. Substitution of Cys-305 with Ala in the wild-type enzyme inactivated M-CPTI, and a single change of Ala-305 to Cys in the 9-residue C-terminal cysteineless mutant resulted in an 8-residue C-terminal cysteineless mutant enzyme that had activity and malonyl-CoA sensitivity similar to those of the wild type, suggesting that Cys-305 is the residue involved in catalysis. Sequence alignments of CPTI with the acyltransferase family of enzymes in the GenBank led to the identification of a putative catalytic triad in CPTI consisting of residues Cys-305, Asp-454, and His-473. Based on the mutagenesis and substrate labeling studies, we propose a mechanism for the acyltransferase activity of CPTI that uses a catalytic triad composed of Cys-305, His-473, and Asp-454 with Cys-305 serving as a probable nucleophile, thus acting as a site for covalent attachment of the acyl molecule and formation of a stable acyl-enzyme intermediate. This would in turn allow carnitine to act as a second nucleophile and complete the acyl transfer reaction.  相似文献   

3.
Fructosyltransferases catalyze the transfer of a fructose unit from one sucrose/fructan to another and are engaged in the production of fructooligosaccharide/fructan. The enzymes belong to the glycoside hydrolase family 32 (GH32) with a retaining catalytic mechanism. Here we describe the crystal structures of recombinant fructosyltransferase (AjFT) from Aspergillus japonicus CB05 and its mutant D191A complexes with various donor/acceptor substrates, including sucrose, 1-kestose, nystose, and raffinose. This is the first structure of fructosyltransferase of the GH32 with a high transfructosylation activity. The structure of AjFT comprises two domains with an N-terminal catalytic domain containing a five-blade β-propeller fold linked to a C-terminal β-sandwich domain. Structures of various mutant AjFT-substrate complexes reveal complete four substrate-binding subsites (−1 to +3) in the catalytic pocket with shapes and characters distinct from those of clan GH-J enzymes. Residues Asp-60, Asp-191, and Glu-292 that are proposed for nucleophile, transition-state stabilizer, and general acid/base catalyst, respectively, govern the binding of the terminal fructose at the −1 subsite and the catalytic reaction. Mutants D60A, D191A, and E292A completely lost their activities. Residues Ile-143, Arg-190, Glu-292, Glu-318, and His-332 combine the hydrophobic Phe-118 and Tyr-369 to define the +1 subsite for its preference of fructosyl and glucosyl moieties. Ile-143 and Gln-327 define the +2 subsite for raffinose, whereas Tyr-404 and Glu-405 define the +2 and +3 subsites for inulin-type substrates with higher structural flexibilities. Structural geometries of 1-kestose, nystose and raffinose are different from previous data. All results shed light on the catalytic mechanism and substrate recognition of AjFT and other clan GH-J fructosyltransferases.  相似文献   

4.
Autoproteolytic cleavage and activation of human acid ceramidase   总被引:1,自引:0,他引:1  
Herein we report the mechanism of human acid ceramidase (AC; N-acylsphingosine deacylase) cleavage and activation. A highly purified, recombinant human AC precursor underwent self-cleavage into alpha and beta subunits, similar to other members of the N-terminal nucleophile hydrolase superfamily. This reaction proceeded with first order kinetics, characteristic of self-cleavage. AC self-cleavage occurred most rapidly at acidic pH, but also at neutral pH. Site-directed mutagenesis and expression studies demonstrated that Cys-143 was an essential nucleophile that was required at the cleavage site. Other amino acids participating in AC cleavage included Arg-159 and Asp-162. Mutations at these three amino acids prevented AC cleavage and activity, the latter assessed using BODIPY-conjugated ceramide. We propose the following mechanism for AC self-cleavage and activation. Asp-162 likely forms a hydrogen bond with Cys-143, initiating a conformational change that allows Arg-159 to act as a proton acceptor. This, in turn, facilitates an intermediate thioether bond between Cys-143 and Ile-142, the site of AC cleavage. Hydrolysis of this bond is catalyzed by water. Treatment of recombinant AC with the cysteine protease inhibitor, methyl methanethiosulfonate, inhibited both cleavage and enzymatic activity, further indicating that cysteine-mediated self-cleavage is required for ceramide hydrolysis.  相似文献   

5.
Human bile acid-CoA:amino acid N-acyltransferase (hBAT), an enzyme catalyzing the conjugation of bile acids with the amino acids glycine or taurine has significant sequence homology with dienelactone hydrolases and other alpha/beta hydrolases. These enzymes have a conserved catalytic triad that maps onto the mammalian BATs at residues Cys-235, Asp-328, and His-362 of the human sequence, albeit that the hydrolases contain a serine instead of a cysteine. In the present study, the function of the putative catalytic triad of hBAT was examined by chemical modification with the cysteine alkylating reagent N-ethylmaleimide (NEM) and by site-directed mutagenesis of the triad residues followed by enzymology studies of mutant and wild-type hBATs. Treatment with NEM caused inactivation of wild-type hBAT. However, preincubation of wild-type hBAT with the substrate cholyl-CoA before NEM treatment prevented loss of N-acyltransferase activity. Substitution of His-362 or Asp-328 with alanine results in inactivation of hBAT. Although substitution of Cys-235 with serine generated an hBAT mutant with lower N-acyltransferase activity, it substantially increased the bile acid-CoA thioesterase activity compared with wild type. In summary, data from this study support the existence of an essential catalytic triad within hBAT consisting of Cys-235, His-362, and Asp-328 with Cys-235 serving as the probable nucleophile and thus the site of covalent attachment of the bile acid molecule.  相似文献   

6.
Bacteriorhodopsin (BR) functions as a light-driven proton pump, whereas Anabaena sensory rhodopsin (ASR) is believed to function as a photosensor despite the high similarity in their protein sequences. In Fourier transform infrared (FTIR) spectroscopic studies, the lowest O-D stretch for D2O was observed at ∼2200 cm−1 in BR but was significantly higher in ASR (>2500 cm−1), which was previously attributed to a water molecule near the Schiff base (W402) that is H-bonded to Asp-85 in BR and Asp-75 in ASR. We investigated the factors that differentiate the lowest O-D stretches of W402 in BR and ASR. Quantum mechanical/molecular mechanical calculations reproduced the H-bond geometries of the crystal structures, and the calculated O-D stretching frequencies were corroborated by the FTIR band assignments. The potential energy profiles indicate that the smaller O-D stretching frequency in BR originates from the significantly higher pKa(Asp-85) in BR relative to the pKa(Asp-75) in ASR, which were calculated to be 1.5 and −5.1, respectively. The difference is mostly due to the influences of Ala-53, Arg-82, Glu-194–Glu-204, and Asp-212 on pKa(Asp-85) in BR and the corresponding residues Ser-47, Arg-72, Ser-188-Asp-198, and Pro-206 on pKa(Asp-75) in ASR. Because these residues participate in proton transfer pathways in BR but not in ASR, the presence of a strongly H-bonded water molecule near the Schiff base ultimately results from the proton-pumping activity in BR.  相似文献   

7.
The catalytic domain of XynCDBFV, a glycoside hydrolase family 11 (GH11) xylanase from ruminal fungus Neocallimastix patriciarum previously engineered to exhibit higher specific activity and broader pH adaptability, holds great potential in commercial applications. Here, the crystal structures of XynCDBFV and its complex with substrate were determined to 1.27–1.43 Å resolution. These structures revealed a typical GH11 β-jelly-roll fold and detailed interaction networks between the enzyme and ligands. Notably, an extended N-terminal region (NTR) consisting of 11 amino acids was identified in the XynCDBFV structure, which is found unique among GH11 xylanases. The NTR is attached to the catalytic core by hydrogen bonds and stacking forces along with a disulfide bond between Cys-4 and Cys-172. Interestingly, the NTR deletion mutant retained 61.5% and 19.5% enzymatic activity at 55 °C and 75 °C, respectively, compared with the wild-type enzyme, whereas the C4A/C172A mutant showed 86.8% and 23.3% activity. These results suggest that NTR plays a role in XynCDBFV thermostability, and the Cys-4/Cys-172 disulfide bond is critical to the NTR-mediated interactions. Furthermore, we also demonstrated that Pichia pastoris produces XynCDBFV with higher catalytic activity at higher temperature than Escherichia coli, in which incorrect NTR folding and inefficient disulfide bond formation might have occurred. In conclusion, these structural and functional analyses of the industrially favored XynCDBFV provide a molecular basis of NTR contribution to its thermostability.  相似文献   

8.
4-O-β-Di-N-acetylchitobiosyl moranoline (2) and 4-O-β-tri-N-acetylchitotriosyl moranoline (3) were produced by lysozyme-mediated transglycosylation from the substrates tetra-N-acetylchitotetraose, (GlcNAc)4, and moranoline, and the binding modes of 2 and 3 to hen egg white lysozyme (HEWL) was examined by inhibition kinetics, isothermal titration calorimetry (ITC), and x-ray crystallography. Compounds 2 and 3 specifically bound to HEWL, acting as competitive inhibitors with Ki values of 2.01 × 10−5 and 1.84 × 10−6 m, respectively. From ITC analysis, the binding of 3 was found to be driven by favorable enthalpy change (ΔHr°), which is similar to those obtained for 2 and (GlcNAc)4. However, the entropy loss (−TΔSr°) for the binding of 3 was smaller than those of 2 and (GlcNAc)4. Thus the binding of 3 was found to be more favorable than those of the others. Judging from the Kd value of 3 (760 nm), the compound appears to have the highest affinity among the lysozyme inhibitors identified to date. X-ray crystal structure of HEWL in a complex with 3 showed that compound 3 binds to subsites −4 to −1 and the moranoline moiety adopts an undistorted 4C1 chair conformation almost overlapping with the −1 sugar covalently bound to Asp-52 of HEWL (Vocadlo, Davies, G. J., Laine, R., and Withers, S. G. (2001) Nature 412, 835–838). From these results, we concluded that compound 3 serves as a transition-state analogue for lysozyme providing additional evidence supporting the covalent glycosyl-enzyme intermediate in the catalytic reaction.  相似文献   

9.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

10.
The β-glucosidase encoded by the td2f2 gene was isolated from a compost microbial metagenomic library by functional screening. The protein was identified to be a member of the glycoside hydrolase family 1 and was overexpressed in Escherichia coli, purified, and biochemically characterized. The recombinant β-glucosidase, Td2F2, exhibited enzymatic activity with β-glycosidic substrates, with preferences for glucose, fucose, and galactose. Hydrolysis occurred at the nonreducing end and in an exo manner. The order of catalytic efficiency for glucodisaccharides and cellooligosaccharides was sophorose > cellotetraose > cellotriose > laminaribiose > cellobiose > cellopentaose > gentiobiose, respectively. Intriguingly, the p-nitrophenyl-β-d-glucopyranoside hydrolysis activity of Td2F2 was activated by various monosaccharides and sugar alcohols. At a d-glucose concentration of 1000 mm, enzyme activity was 6.7-fold higher than that observed in the absence of d-glucose. With 31.3 mm d-glucose, Td2F2 catalyzed transglycosylation to generate sophorose, laminaribiose, cellobiose, and gentiobiose. Transglycosylation products were detected under all activated conditions, suggesting that the activity enhancement induced by monosaccharides and sugar alcohols may be due to the transglycosylation activity of the enzyme. These results show that Td2F2 obtained from a compost microbial metagenome may be a potent candidate for industrial applications.  相似文献   

11.
The epithelial Na+ channel (ENaC) is comprised of three homologous subunits (α, β, and γ) that have a similar topology with two transmembrane domains, a large extracellular region, and cytoplasmic N and C termini. Although ENaC activity is regulated by a number of factors, palmitoylation of its cytoplasmic Cys residues has not been previously described. Fatty acid-exchange chemistry was used to determine whether channel subunits were Cys-palmitoylated. We observed that only the β and γ subunits were modified by Cys palmitoylation. Analyses of ENaCs with mutant β subunits revealed that Cys-43 and Cys-557 were palmitoylated. Xenopus oocytes expressing ENaC with a β C43A,C557A mutant had significantly reduced amiloride-sensitive whole cell currents, enhanced Na+ self-inhibition, and reduced single channel Po when compared with wild-type ENaC, while membrane trafficking and levels of surface expression were unchanged. Computer modeling of cytoplasmic domains indicated that β Cys-43 is in proximity to the first transmembrane α helix, whereas β Cys-557 is within an amphipathic α-helix contiguous with the second transmembrane domain. We propose that β subunit palmitoylation modulates channel gating by facilitating interactions between cytoplasmic domains and the plasma membrane.  相似文献   

12.
Dextranase is an enzyme that hydrolyzes dextran α-1,6 linkages. Streptococcus mutans dextranase belongs to glycoside hydrolase family 66, producing isomaltooligosaccharides of various sizes and consisting of at least five amino acid sequence regions. The crystal structure of the conserved fragment from Gln100 to Ile732 of S. mutans dextranase, devoid of its N- and C-terminal variable regions, was determined at 1.6 Å resolution and found to contain three structural domains. Domain N possessed an immunoglobulin-like β-sandwich fold; domain A contained the enzyme''s catalytic module, comprising a (β/α)8-barrel; and domain C formed a β-sandwich structure containing two Greek key motifs. Two ligand complex structures were also determined, and, in the enzyme-isomaltotriose complex structure, the bound isomaltooligosaccharide with four glucose moieties was observed in the catalytic glycone cleft and considered to be the transglycosylation product of the enzyme, indicating the presence of four subsites, −4 to −1, in the catalytic cleft. The complexed structure with 4′,5′-epoxypentyl-α-d-glucopyranoside, a suicide substrate of the enzyme, revealed that the epoxide ring reacted to form a covalent bond with the Asp385 side chain. These structures collectively indicated that Asp385 was the catalytic nucleophile and that Glu453 was the acid/base of the double displacement mechanism, in which the enzyme showed a retaining catalytic character. This is the first structural report for the enzyme belonging to glycoside hydrolase family 66, elucidating the enzyme''s catalytic machinery.  相似文献   

13.
14.
A growing body of evidence suggests that the extracellular domain of the epithelial Na+ channel (ENaC) functions as a sensor that fine tunes channel activity in response to changes in the extracellular environment. We previously found that acidic pH increases the activity of human ENaC, which results from a decrease in Na+ self-inhibition. In the current work, we identified extracellular domain residues responsible for this regulation. We found that rat ENaC is less sensitive to pH than human ENaC, an effect mediated in part by the γ subunit. We identified a group of seven residues in the extracellular domain of γENaC (Asp-164, Gln-165, Asp-166, Glu-292, Asp-335, His-439, and Glu-455) that, when individually mutated to Ala, decreased proton activation of ENaC. γE455 is conserved in βENaC (Glu-446); mutation of this residue to neutral amino acids (Ala, Cys) reduced ENaC stimulation by acidic pH, whereas reintroduction of a negative charge (by MTSES modification of Cys) restored pH regulation. Combination of the seven γENaC mutations with βE446A generated a channel that was not activated by acidic pH, but inhibition by alkaline pH was intact. Moreover, these mutations reduced the effect of pH on Na+ self-inhibition. Together, the data identify eight extracellular domain residues in human β- and γENaC that are required for regulation by acidic pH.  相似文献   

15.
The versatile thiol mercaptosuccinate has a wide range of applications, e.g. in quantum dot research or in bioimaging. Its metabolism is investigated in Variovorax paradoxus strain B4, which can utilize this compound as the sole source of carbon and sulfur. Proteomic studies of strain B4 resulted in the identification of a putative mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, possibly representing the key enzyme in the degradation of mercaptosuccinate. Therefore, the putative mercaptosuccinate dioxygenase was heterologously expressed, purified, and characterized in this study. The results clearly demonstrated that the enzyme utilizes mercaptosuccinate with concomitant consumption of oxygen. Thus, the enzyme is designated as mercaptosuccinate dioxygenase. Succinate and sulfite were verified as the final reaction products. The enzyme showed an apparent Km of 0.4 mm, and a specific activity (Vmax) of 20.0 μmol min−1 mg−1 corresponding to a kcat of 7.7 s−1. Furthermore, the enzyme was highly specific for mercaptosuccinate, no activity was observed with cysteine, dithiothreitol, 2-mercaptoethanol, and 3-mercaptopropionate. These structurally related thiols did not have an inhibitory effect either. Fe(II) could clearly be identified as metal cofactor of the mercaptosuccinate dioxygenase with a content of 0.6 mol of Fe(II)/mol of enzyme. The recently proposed hypothesis for the degradation pathway of mercaptosuccinate based on proteome analyses could be strengthened in the present study. (i) Mercaptosuccinate is first converted to sulfinosuccinate by this mercaptosuccinate dioxygenase; (ii) sulfinosuccinate is spontaneously desulfinated to succinate and sulfite; and (iii) whereas succinate enters the central metabolism, sulfite is detoxified by the previously identified putative molybdopterin oxidoreductase.  相似文献   

16.
Chitinases hydrolyze chitin, an insoluble linear polymer of N-acetyl-d-glucosamine (NAG)n, into nutrient sources. Bacillus cereus NCTU2 chitinase (ChiNCTU2) predominantly produces chitobioses and belongs to glycoside hydrolase family 18. The crystal structure of wild-type ChiNCTU2 comprises only a catalytic domain, unlike other chitinases that are equipped with additional chitin binding and insertion domains to bind substrates into the active site. Lacking chitin binding and chitin insertion domains, ChiNCTU2 utilizes two dynamic loops (Gly-67—Thr-69 and Ile-106–Val-112) to interact with (NAG)n, generating novel substrate binding and distortion for catalysis. Gln-109 is crucial for direct binding with substrates, leading to conformational changes of two loops with a maximum shift of ∼4.6 Å along the binding cleft. The structures of E145Q, E145Q/Y227F, and E145G/Y227F mutants complexed with (NAG)n reveal (NAG)2, (NAG)2, and (NAG)4 in the active site, respectively, implying various stages of reaction: before hydrolysis, E145G/Y227F with (NAG)4; in an intermediate state, E145Q/Y227F with a boat-form NAG at the −1 subsite, −1-(NAG); after hydrolysis, E145Q with a chair form −1-(NAG). Several residues were confirmed to play catalytic roles: Glu-145 in cleavage of the glycosidic bond between −1-(NAG) and +1-(NAG); Tyr-227 in the conformational change of −1-(NAG); Asp-143 and Gln-225 in stabilizing the conformation of −1-(NAG). Additionally, Glu-190 acts in the process of product release, and Tyr-193 coordinates with water for catalysis. Residues Asp-143, E145Q, Glu-190, and Tyr-193 exhibit multiple conformations for functions. The inhibitors zinc ions and cyclo-(l-His-l-Pro) are located at various positions and confirm the catalytic-site topology. Together with kinetics analyses of related mutants, the structures of ChiNCTU2 and its mutant complexes with (NAG)n provide new insights into its substrate binding and the mechanistic action.  相似文献   

17.
We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc4-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc4-β-CD as a glycogen mimic substrate showed that it followed the breakdown process of the well-known yeast and rat liver extract. TreX catalyzed both hydrolysis of α-1,6-glycosidic linkages and transglycosylation at relatively high (>0.5 mM) substrate concentrations. TreX transferred maltotetraosyl moieties from the donor substrate to acceptor molecules, resulting in the formation of two positional isomers of dimaltotetraosyl-α-1,6-β-cyclodextrin [(Glc4)2-β-CD]; these were 61,63- and 61,64-dimaltotetraosyl-α-1,6-β-CD. Use of a modified Michaelis-Menten equation to study substrate transglycosylation revealed that the kcat and Km values for transglycosylation were 1.78 × 103 s−1 and 3.30 mM, respectively, whereas the values for hydrolysis were 2.57 × 103 s−1 and 0.206 mM, respectively. Also, enzyme catalytic efficiency (the kcat/Km ratio) increased as the degree of polymerization of branch chains rose. In the model reaction system of Escherichia coli, glucose-1-phosphate production from glycogen by the glycogen phosphorylase was elevated ∼1.45-fold in the presence of TreX compared to that produced in the absence of TreX. The results suggest that outward shifting of glycogen branch chains via transglycosylation increases the number of exposed chains susceptible to phosphorylase action. We developed a model of the glycogen breakdown process featuring both hydrolysis and transglycosylation catalyzed by the debranching enzyme.  相似文献   

18.
Delta-5 and delta-6 desaturases (D5D and D6D) are key enzymes in endogenous synthesis of long-chain PUFAs. In this sample of healthy subjects (n = 310), genotypes of single nucleotide polymorphisms (SNPs) rs174537, rs174561, and rs3834458 in the FADS1-FADS2 gene cluster were strongly associated with proportions of LC-PUFAs and desaturase activities estimated in plasma and erythrocytes. Minor allele carriage associated with decreased activities of D5D (FADS1) (5.84 × 10−19P ≤ 4.5 × 10−18) and D6D (FADS2) (6.05 × 10−8P ≤ 4.20 × 10−7) was accompanied by increased substrate and decreased product proportions (0.05 ≤ P ≤ 2.49 × 10−16). The significance of haplotype association with D5D activity (P = 2.19 × 10−17) was comparable to that of single SNPs, but haplotype association with D6D activity (P = 3.39 × 10−28) was much stronger. In a randomized controlled dietary intervention, increasing eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) intake significantly increased D5D (P = 4.0 × 10−9) and decreased D6D activity (P = 9.16 × 10−6) after doses of 0.45, 0.9, and 1.8 g/day for six months. Interaction of rs174537 genotype with treatment was a determinant of D5D activity estimated in plasma (P = 0.05). In conclusion, different sites at the FADS1-FADS2 locus appear to influence D5D and D6D activity, and rs174537 genotype interacts with dietary EPA+DHA to modulate D5D.  相似文献   

19.
Calpains constitute a superfamily of Ca2+-dependent cysteine proteases, indispensable for various cellular processes. Among the 15 mammalian calpains, calpain 8/nCL-2 and calpain 9/nCL-4 are predominantly expressed in the gastrointestinal tract and are restricted to the gastric surface mucus (pit) cells in the stomach. Possible functions reported for calpain 8 are in vesicle trafficking between ER and Golgi, and calpain 9 are implicated in suppressing tumorigenesis. These highlight that calpains 8 and 9 are regulated differently from each other and from conventional calpains and, thus, have potentially important, specific functions in the gastrointestinal tract. However, there is no direct evidence implicating calpain 8 or 9 in human disease, and their properties and physiological functions are currently unknown. To address their physiological roles, we analyzed mice with mutations in the genes for these calpains, Capn8 and Capn9. Capn8−/− and Capn9−/− mice were fertile, and their gastric mucosae appeared normal. However, both mice were susceptible to gastric mucosal injury induced by ethanol administration. Moreover, the Capn8−/− stomach showed significant decreases in both calpains 9 and 8, and the same was true for Capn9−/−. Consistent with this finding, in the wild-type stomach, calpains 8 and 9 formed a complex we termed “G-calpain,” in which both were essential for activity. This is the first example of a “hybrid” calpain complex. To address the physiological relevance of the calpain 8 proteolytic activity, we generated calpain 8:C105S “knock-in” (Capn8CS/CS) mice, which expressed a proteolytically inactive, but structurally intact, calpain 8. Although, unlike the Capn8−/− stomach, that of the Capn8CS/CS mice expressed a stable and active calpain 9, the mice were susceptible to ethanol-induced gastric injury. These results provide the first evidence that both of the gastrointestinal-tract-specific calpains are essential for gastric mucosal defense, and they point to G-calpain as a potential target for gastropathies caused by external stresses.  相似文献   

20.
Squalene epoxidase (SE) (EC 1.14.99.7) is a flavin-requiring, non-cytochrome P-450 oxidase that catalyzes the conversion of squalene to (3S)-2,3-oxidosqualene. Photolabeling and site-directed mutagenesis were performed on recombinant rat SE (rrSE) to elucidate the location and roles of active-site residues important for catalysis. Two new benzophenone-containing analogs of NB-598, a nanomolar inhibitor of vertebrate SE, were synthesized in tritium-labeled form. These photoaffinity analogs (PDA-I and PDA-II) became covalently attached to SE when irradiated at 360 nm. Lys-C digestion and HPLC purification of [3H]PDA-I-labeled rrSE resulted in isolation of a single major peptide. MALDI-TOF mass spectrometry of this peptide indicated a covalent adduct between PDA-I and a tripeptide, Asp-Ile-Lys, beginning at Asp-426 of rat SE. Based on the labeling results, three mutant constructs were made. First, the D426A and K428A constructs showed a 5- to 8-fold reduction in SE activity compared with wild-type enzyme, while little change was observed in the I427A mutant. Second, a set of five mutant constructs was prepared for the conserved region based on the structure of the flavoprotein p-hydroxybenzoate hydroxylase (PHBH). Compared with wild-type, D284A and D407A showed less than 25% SE activity. This reduction also appeared to correlate with reduced affinity of the mutant proteins for FAD. Finally, each of the seven Cys residues of rrSE were individually mutated to Ala. Three Cys substitutions had no effect on SE activity, and substitutions at Cys-500 and Cys-533 showed a 50% lower SE activity. Mutations at Cys-490 and Cys-557 produced proteins with negligible SE activity, implicating these residues as being either structurally or catalytically essential. Chemical modification of wildtype and Cys mutants with a thiol-modifying reagent support the existence of a disulfide bond between Cys-490 and Cys-557.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号