首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thioredoxin-interacting protein (Txnip), originally characterized as an inhibitor of thioredoxin, is now known to be a critical regulator of glucose metabolism in vivo. Txnip is a member of the α-arrestin protein family; the α-arrestins are related to the classical β-arrestins and visual arrestins. Txnip is the only α-arrestin known to bind thioredoxin, and it is not known whether the metabolic effects of Txnip are related to its ability to bind thioredoxin or related to conserved α-arrestin function. Here we show that wild type Txnip and Txnip C247S, a Txnip mutant that does not bind thioredoxin in vitro, both inhibit glucose uptake in mature adipocytes and in primary skin fibroblasts. Furthermore, we show that Txnip C247S does not bind thioredoxin in cells, using thiol alkylation to trap the Txnip-thioredoxin complex. Because Txnip function was independent of thioredoxin binding, we tested whether inhibition of glucose uptake was conserved in the related α-arrestins Arrdc4 and Arrdc3. Both Txnip and Arrdc4 inhibited glucose uptake and lactate output, while Arrdc3 had no effect. Structure-function analysis indicated that Txnip and Arrdc4 inhibit glucose uptake independent of the C-terminal WW-domain binding motifs, recently identified as important in yeast α-arrestins. Instead, regulation of glucose uptake was intrinsic to the arrestin domains themselves. These data demonstrate that Txnip regulates cellular metabolism independent of its binding to thioredoxin and reveal the arrestin domains as crucial structural elements in metabolic functions of α-arrestin proteins.Thioredoxin-interacting protein (Txnip),3 an inhibitor of thioredoxin disulfide reductase activity in vitro (13), is robustly induced by glucose (46) and a critical regulator of metabolism in vivo (710). In humans, Txnip expression is suppressed by insulin and strongly up-regulated in diabetes (7). Txnip-deficient mice have fasting hypoglycemia and ketosis (8, 9, 11, 12) with a striking enhancement of glucose uptake by peripheral tissues (8, 9). We have proposed that Txnip inhibits thioredoxin by forming a mixed disulfide with thioredoxin at its catalytic active site cysteines in a disulfide exchange reaction (13). However, it is not known how Txnip metabolic functions relate to its ability to bind thioredoxin.Structurally, Txnip belongs to the arrestin superfamily of proteins (14). The prototypical arrestins (the visual arrestins and the β-arrestins) are key regulators of receptor signaling. The β-arrestins, named for their interaction with the β-adrenergic receptor, are now known to control signaling through the multiple families of receptors (15). These arrestin proteins have two wing-like arrestin domains arranged around a central core that detects and binds selectively to the charged phosphates of activated receptors (16). The arrestin domains then act as multifunctional scaffolds that cannot only quench receptor signals by recruiting endocytotic machinery and ubiquitin ligases, but also start new signal cascades (15). Recently, arrestin-β2 has also been shown to play a key role in metabolism as a controller of insulin receptor signaling that is deficient in diabetes (17).In addition to the classical visual/β-arrestins, a large number of arrestins more closely related to Txnip are present throughout multicellular evolution. These proteins have been termed the “α-arrestins,” as they are of more ancient origin than the visual/β family (14). Although no structures are known of the α-arrestins to date, they appear highly likely to share the overall fold: two β-sheet sandwich arrestin domains connected by a short linker sequence (14, 18). Confidence in this prediction has been enhanced by the surprising finding that the vps26 family of proteins, even more distantly related to the classical arrestins than Txnip, also share the arrestin fold (19). The vps26 proteins are a component of the retromer complex that controls retrograde transport of recycling endosomes to the trans-Golgi network. This functional overlap with visual/β-arrestin regulation of endocytosis suggests that control of endosome formation and transport may be a conserved function of the arrestin superfamily fold.The functions of the mammalian α-arrestins remain unclear. Humans have six α-arrestins: Txnip and five other proteins, which have been assigned the names Arrdc1–5 (arrestin domain-containing 1–5) (13). Very little is known about these other α-arrestins; thioredoxin binding is not conserved beyond Txnip (13, 20). More is known in yeast: recent reports suggest that α-arrestins function in regulation of endocytosis and protein ubiquitination through PXXY motifs in their C-terminal tails (2125). However, as all the vertebrate α-arrestins have diverged from the ancestral α-arrestins (14), their structure-function relationships may differ from yeast α-arrestins.Given that other α-arrestins are not thioredoxin-binding proteins, we hypothesized that Txnip metabolic functions may be conserved in mammalian α-arrestins and independent of its interaction with thioredoxin. Overexpression of Txnip in vitro can decrease levels of available thioredoxin and increase levels of reactive oxygen species (1, 3, 26). However, in vivo studies of two different Txnip-deficient mouse models found no change in available thioredoxin levels (8, 27). Txnip reportedly binds to other proteins including Jab1 (28) and Dnajb5 (29), but it is not clear to what extent these interactions are themselves independent of a Txnip-thioredoxin complex (30).Using overexpression of a mutant Txnip that does not bind thioredoxin, we show here that a major metabolic function of Txnip, its inhibition of glucose uptake, does not require interaction with thioredoxin. Instead, we show that inhibition of glucose uptake is a conserved function of another human α-arrestin, Arrdc4. Studies of Txnip mutants and chimeric α-arrestins suggest that the metabolic functions of Txnip and Arrdc4 are intrinsic to the arrestin domains.  相似文献   

3.
4.
Comparative evolutionary analyses of gene families among divergent lineages can provide information on the order and timing of major gene duplication events and evolution of gene function. Here we investigate the evolutionary history of the α-globin gene family in mammals by isolating and characterizing α-like globin genes from an Australian marsupial, the tammar wallaby, Macropus eugenii. Sequence and phylogenetic analyses indicate that the tammar α-globin family consists of at least four genes including a single adult-expressed gene (α), two embryonic/neonatally expressed genes (ζ and ζ′), and θ-globin, each orthologous to the respective α-, ζ-, and θ-globin genes of eutherian mammals. The results suggest that the θ-globin lineage arose by duplication of an ancestral adult α-globin gene and had already evolved an unusual promoter region, atypical of all known α-globin gene promoters, prior to the divergence of the marsupial and eutherian lineages. Evolutionary analyses, using a maximum likelihood approach, indicate that θ-globin, has evolved under strong selective constraints in both marsupials and the lineage leading to human θ-globin, suggesting a long-term functional status. Overall, our results indicate that at least a four-gene cluster consisting of three α-like and one β-like globin genes linked in the order 5′–ζ–α–θ–ω–3′ existed in the common ancestor of marsupials and eutherians. However, results are inconclusive as to whether the two tammar ζ-globin genes arose by duplication prior to the radiation of the marsupial and eutherian lineages, with maintenance of exon sequences by gene conversion, or more recently within marsupials.Reviewing Editor: Dr. John Oakeshott  相似文献   

5.
Transforming growth factor (TGF)-β2 is an important anti-inflammatory protein in milk and colostrum. TGF-β2 supplementation appears to reduce gut inflammatory diseases in early life, such as necrotizing enterocolitis (NEC) in young mice. However, the molecular mechanisms by which TGF-β2 protects immature intestinal epithelial cells (IECs) remain to be more clearly elucidated before interventions in infants can be considered. Porcine IECs PsIc1 were treated with TGF-β2 and/or lipopolysaccharide (LPS), and changes in the cellular proteome were subsequently analyzed using two-dimensional gel electrophoresis-MS and LC-MS-based proteomics. TGF-β2 alone induced the differential expression of 13 proteins and the majority of the identified proteins were associated with stress responses, TGF-β and Toll-like receptor 4 signaling cascades. In particular, a series of heat shock proteins had similar differential trends as previously shown in the intestine of NEC-resistant preterm pigs and young mice. Furthermore, LC-MS-based proteomics and Western blot analyses revealed 20 differentially expressed proteins following treatment with TGF-β2 in LPS-challenged IECs. Thirteen of these proteins were associated with stress response pathways, among which five proteins were altered by LPS and restored by TGF-β2, whereas six were differentially expressed only by TGF-β2 in LPS-challenged IECs. Based on previously reported biological functions, these patterns indicate the anti-stress and anti-inflammatory effects of TGF-β2 in IECs. We conclude that TGF-β2 of dietary or endogenous origin may regulate the IEC responses against LPS stimuli, thereby supporting cellular homeostasis and innate immunity in response to bacterial colonization, and the first enteral feeding in early life.  相似文献   

6.
G protein β-like (GβL) is a member of WD repeat-containing family which are involved in various intracellular signaling events. In our previous report, we demonstrated that GβL regulates TNFα-stimulated NF-κB signaling by interacting with and inhibiting phosphorylation of IκB kinase. However, GβL itself does not seem to regulate IKK directly, because it contains no functional domains except WD domains. Here, using immunoprecipitation and proteomic analyses, we identified protein phosphatase 4 as a new binding partner of GβL. We also found that GβL interacts with PP2A and PP6, other members of the same phosphatase family. By interacting with protein phosphatases, which do not directly bind to IKKβ, GβL mediates the association of phosphatases with IKKβ. Overexpression of protein phosphatases inhibited TNFκ-induced activation of NF-κB signaling, which is an effect similar to that of GβL overexpression. Down-regulation of GβL by small interfering RNA diminished the inhibitory effect of phosphatases, resulting in restoration of NF-κB signaling. Thus, we propose that GβL functions as a negative regulator of NF-κB signaling by recruiting protein phosphatases to the IKK complex.  相似文献   

7.

Background

Studies in mice have shown that PPARα is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPARα in human liver. Here we set out to compare the function of PPARα in mouse and human hepatocytes via analysis of target gene regulation.

Methodology/Principal Findings

Primary hepatocytes from 6 human and 6 mouse donors were treated with PPARα agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPARα expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362–672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPARα in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPARα targets, including CPT1A, HMGCS2, FABP1, ACSL1, and ADFP. Several genes were identified that were specifically induced by PPARα in human (MBL2, ALAS1, CYP1A1, TSKU) or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4). Furthermore, several putative novel PPARα targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8.

Conclusions/Significance

Our results suggest that PPARα activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPARα as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPARα regulates a mostly divergent set of genes in mouse and human hepatocytes.  相似文献   

8.
Agonist-induced phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) promotes their desensitization and internalization. Here, we sought to determine the role of GRK2 on FcϵRI signaling and mediator release in mast cells. The strategies utilized included lentiviral shRNA-mediated GRK2 knockdown, GRK2 gene deletion (GRK2flox/flox/cre recombinase) and overexpression of GRK2 and its regulator of G protein signaling homology (RH) domain (GRK2-RH). We found that silencing GRK2 expression caused ∼50% decrease in antigen-induced Ca2+ mobilization and degranulation but resulted in ablation of cytokine (IL-6 and IL-13) generation. The effect of GRK2 on cytokine generation does not require its catalytic activity but is mediated via the phosphorylation of p38 and Akt. Overexpression of GRK2 or its RH domain (GRK2-RH) enhanced antigen-induced mast cell degranulation and cytokine generation without affecting the expression levels of any of the FcϵRI subunits (α, β, and γ). GRK2 or GRK2-RH had no effect on antigen-induced phosphorylation of FcϵRIγ or Src but enhanced tyrosine phosphorylation of Syk. These data demonstrate that GRK2 modulates FcϵRI signaling in mast cells via at least two mechanisms. One involves GRK2-RH and modulates tyrosine phosphorylation of Syk, and the other is mediated via the phosphorylation of p38 and Akt.  相似文献   

9.
《Molecular cell》2014,53(4):663-671
  1. Download : Download high-res image (85KB)
  2. Download : Download full-size image
  相似文献   

10.
11.
Bacillus circulans F-2 requires a special carbon source or cultural conditions for amylase production. The α-glucosidase production of this bacterium was studied in various cultural conditions with measured glucose concèntrations. High amylase production was always accompanied by low α-glucosidase production and the absence of glucose in culture broth. Usually higher α-glucosidase production was observed in cultural conditions where little amylase was produced. In the presence of 1-deoxynojirimycin, an inhibitor of α-glucosidase activity, the bacterium produced significant amounts of amylase even in conditions giving high α-glucosidase production. It was concluded that the special requirement of this bacterium to produce amylase is effected by its high sensitivity to glucose repression and by the production of α-glucosidase which leads to the formation of glucose. Production of α-glucosidase was, like that of amylase, induced by maltooligosaccharides and repressed by glucose, but both its induction and repression are less sensitive to glucose than those of amylase.  相似文献   

12.
13.
The human β-like globin genes are arranged as a clusterof five genes (ε, Gγ, Aγ, δ and β) in the order of theirtemporal expression. The human embryonic ε-globin geneis expressed in the blood island of the embryonic yolk sacand is silenced completel  相似文献   

14.
15.
16.
The β-globin gene cluster of Wistar rat was extensively cloned and the embryonic genes were mapped and sequenced. Four overlapping λ Dash recombinant clones cover about 31 kb and contain four nonadult β-globin genes, 5′–ε1–γ1–γ2–ψγ3–3′. The ε1 and γ2 are active genes, since their protein products were detected in the fetal stage of the rat (Iwahara et al., J Biochem 119:360–366, 1996). The γ1 locus might be a pseudogene, since the ATA box in the promoter region is mutated to GTA; however, no other defect is observed. The ψγ3 locus is a truncated pseudogene because a 19-base deletion, which causes a shift of the reading frame, is observed between the second nucleotide of the putative codon 68 and codon 76. A sequence comparison suggests that the ψγ3 might be produced by a gene conversion event of the proto-γ-globin gene set. Possible histories of the evolution of rat nonadult β-globin genes are discussed. Received: 6 August 1998 / Accepted: 12 February 1999  相似文献   

17.
To know whether genes involved in cell–cell communication typical of multicellular animals dramatically increased in concert with the Cambrian explosion, the rapid evolutionary burst in the major groups of animals, and whether these genes exist in the sponge lacking cell cohesiveness and coordination typical of eumetazoans, we have carried out cloning of the G-protein α subunit (Gα) and the protein tyrosine kinase (PTK) cDNAs from Ephydatia fluviatilis (freshwater sponge) and Hydra magnipapillata strain 105 (hydra). We obtained 13 Gα and 20 PTK cDNAs. Generally animal gene families diverged first by gene duplication (subtype duplication) that gave rise to diverse subtypes with different primary functions, followed by further gene duplication in the same subtype (isoform duplication) that gave rise to isoform genes with virtually identical function. Phylogenetic trees of Gα and PTK families including cDNAs from sponge and hydra revealed that most of the present-day subtypes had been established in the very early evolution of animals before the parazoan–eumetazoan split, the earliest branching among the extant animal phyla, by extensive subtype duplication: for PTK and Gα families, 23 and 9 subtype duplications were observed in the early stage before the parazoan–eumetazoan split, respectively, and after that split, only 2 and 1 subtype duplications were found, respectively. After the separation from arthropods, vertebrates underwent frequent isoform duplications before the fish–tetrapod split. Furthermore, rapid amino acid changes appear to have occurred in concert with the extensive subtype duplication and isoform duplication. Thus the pattern of gene diversification during animal evolution might be characterized by bursts of gene duplication interrupted by considerably long periods of silence, instead of proceeding gradually, and there might be no direct link between the Cambrian explosion and the extensive gene duplication that generated diverse functions (subtypes) of these families. Received: 4 November 1998 / Accepted: 17 November 1998  相似文献   

18.
The accessory beta subunit (Cavβ) of calcium channels first appear in the same genome as Cav1 L-type calcium channels in single-celled coanoflagellates. The complexity of this relationship expanded in vertebrates to include four different possible Cavβ subunits (β1, β2, β3, β4) which associate with four Cav1 channel isoforms (Cav1.1 to Cav1.4) and three Cav2 channel isoforms (Cav2.1 to Cav2.3). Here we assess the fundamentally-shared features of the Cavβ subunit in an invertebrate model (pond snail Lymnaea stagnalis) that bears only three homologous genes: (LCav1, LCav2, and LCavβ). Invertebrate Cavβ subunits (in flatworms, snails, squid and honeybees) slow the inactivation kinetics of Cav2 channels, and they do so with variable N-termini and lacking the canonical palmitoylation residues of the vertebrate β2a subunit. Alternative splicing of exon 7 of the HOOK domain is a primary determinant of a slow inactivation kinetics imparted by the invertebrate LCavβ subunit. LCavβ will also slow the inactivation kinetics of LCav3 T-type channels, but this is likely not physiologically relevant in vivo. Variable N-termini have little influence on the voltage-dependent inactivation kinetics of differing invertebrate Cavβ subunits, but the expression pattern of N-terminal splice isoforms appears to be highly tissue specific. Molluscan LCavβ subunits have an N-terminal “A” isoform (coded by exons: 1a and 1b) that structurally resembles the muscle specific variant of vertebrate β1a subunit, and has a broad mRNA expression profile in brain, heart, muscle and glands. A more variable “B” N-terminus (exon 2) in the exon position of mammalian β3 and has a more brain-centric mRNA expression pattern. Lastly, we suggest that the facilitation of closed-state inactivation (e.g. observed in Cav2.2 and Cavβ3 subunit combinations) is a specialization in vertebrates, because neither snail subunit (LCav2 nor LCavβ) appears to be compatible with this observed property.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号