共查询到20条相似文献,搜索用时 15 毫秒
1.
DC Gondek AJ Olive G Stary MN Starnbach 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(5):2441-2449
Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease in the United States. Chlamydia infections that ascend to the upper genital tract can persist, trigger inflammation, and result in serious sequelae such as infertility. However, mouse models in which the vaginal vault is inoculated with C. trachomatis do not recapitulate the course of human disease. These intravaginal infections of the mouse do not ascend efficiently to the upper genital tract, do not cause persistent infection, do not induce significant inflammation, and do not induce significant CD4(+) T cell infiltration. In this article, we describe a noninvasive transcervical infection model in which we bypass the cervix and directly inoculate C. trachomatis into the uterus. We show that direct C. trachomatis infection of the murine upper genital tract stimulates a robust Chlamydia-specific CD4(+) T cell response that is both necessary and sufficient to clear infection and provide protection against reinfection. 相似文献
2.
Naveen K. Rajasagi Sadik H. Kassim Christina M. Kollias Xiangyi Zhao Robert Chervenak Stephen R. Jennings 《Journal of virology》2009,83(10):5256-5268
The role of CD4+ helper T cells in modulating the acquired immune response to herpes simplex virus type 1 (HSV-1) remains ill defined; in particular, it is unclear whether CD4+ T cells are needed for the generation of the protective HSV-1-specific CD8+-T-cell response. This study examined the contribution of CD4+ T cells in the generation of the primary CD8+-T-cell responses following acute infection with HSV-1. The results demonstrate that the CD8+-T-cell response generated in the draining lymph nodes of CD4+-T-cell-depleted C57BL/6 mice and B6-MHC-II−/− mice is quantitatively and qualitatively distinct from the CD8+ T cells generated in normal C57BL/6 mice. Phenotypic analyses show that virus-specific CD8+ T cells express comparable levels of the activation marker CD44 in mice lacking CD4+ T cells and normal mice. In contrast, CD8+ T cells generated in the absence of CD4+ T cells express the interleukin 2 receptor α-chain (CD25) at lower levels. Importantly, the CD8+ T cells in the CD4+-T-cell-deficient environment are functionally active with respect to the expression of cytolytic activity in vivo but exhibit a diminished capacity to produce gamma interferon and tumor necrosis factor alpha. Furthermore, the primary expansion of HSV-1-specific CD8+ T cells is diminished in the absence of CD4+-T-cell help. These results suggest that CD4+-T-cell help is essential for the generation of fully functional CD8+ T cells during the primary response to HSV-1 infection.Infection due to herpes simplex virus type 1 (HSV-1) results in a wide spectrum of clinical presentations depending on the host''s age, the host''s immune status, and the route of inoculation (47). HSV-1 typically causes mild and self-limited lesions on the orofacial areas or genital sites. However, the disease can be life-threatening, as in the case of neonatal and central nervous system infections (18). The host''s immune responses, particularly CD8+ T cells, play an important role in determining the outcome of HSV infections in both the natural human host (18, 19, 28) and experimental murine models (11, 43). Immunodepletion and adoptive transfer studies have demonstrated the role of CD8+ T cells in reducing viral replication, resolving cutaneous disease, and providing overall protection upon rechallenge (6, 25, 26). CD8+ T cells play a particularly important role in preventing infection of the peripheral nervous system (PNS) and the reactivation of latent virus from neurons in the sensory ganglia of infected mice (21, 24, 36). The mechanisms that CD8+ T cells employ include gamma interferon (IFN-γ) production and functions associated with cytolytic granule content at the sites of primary infection (23, 31, 38). In the PNS of infected mice, the mechanisms primarily involve IFN-γ secretion (16, 20, 29), particularly against infected neurons expressing surface Qa-1 (41). Histopathological evidence from HSV-1-infected human ganglion sections show a large CD8+-T-cell infiltrate and the presence of inflammatory cytokines, suggesting that the presence of activated, effector memory cells within the PNS is important for maintaining HSV-1 latency in the natural human host (10, 42).The generation of a robust CD8+-T-cell response is essential for the control of various infectious pathogens. Some studies suggest that a brief interaction with antigen-presenting cells (APCs) is sufficient for CD8+-T-cell activation and expansion into functional effectors (44). However, the magnitude and quality of the overall CD8+-T-cell response generated may be dependent on additional factors (49). Recent evidence suggests that CD4+ T cells facilitate the activation and development of CD8+-T-cell responses either directly through the provision of cytokines or indirectly by the conditioning of dendritic cells (DC) (8, 48, 51). Those studies suggested that the latter mechanism is the dominant pathway, wherein CD4+ T cells assist CD8+-T-cell priming via the engagement of CD40 ligand (CD154) on CD4+ T cells and CD40 expressed on DC (4, 30, 33). This interaction results in the activation and maturation of DC, making them competent to stimulate antigen-specific CD8+-T-cell responses (35, 37).The requirement for CD4+-T-cell help in the generation of primary and secondary CD8+-T-cell responses to antigen varies. Primary CD8+-T-cell responses to infectious pathogens, such as Listeria monocytogenes, lymphocytic choriomeningitis virus (LCMV), influenza virus, and vaccinia virus, can be mounted effectively independently of CD4+-T-cell help (3, 12, 22, 34). In contrast, primary CD8+-T-cell responses to nonmicrobial antigens display an absolute dependence on CD4+-T-cell help (4, 5, 30, 33, 46). This observed difference in the requirement for CD4+-T-cell help may ultimately be a product of the initial inflammatory stimulus generated following immunization (49). Microbial antigens trigger an inflammatory response that can lead to the direct activation and priming of APCs, such as DC, thereby bypassing the need for CD4+-T-cell help. Nonmicrobial antigens, however, trigger an attenuated inflammatory response that does not directly activate and prime DCs. In the absence of this inflammation, CD4+ T cells are thought to condition and license DC functions through CD154/CD40 interactions, which leads to the subsequent activation of antigen-specific CD8+-T-cell responses (5, 49). Even in the case of pathogens where primary CD8+-T-cell responses were independent of CD4+-T-cell help, the secondary responses to these pathogens were found to be defective in the absence of CD4+-T-cell help (3, 12, 34, 40).The requirement for CD4+-T-cell help in priming CD8+-T-cell responses against HSV-1 infection is not well defined. Earlier studies with HSV-1 suggested that CD4+ T cells play an important role in the generation of primary CD8+-T-cell responses, detected in vitro, to acute infection with HSV-1 (14), principally through the provision of interleukin 2 (IL-2) for optimal CD8+-T-cell differentiation and proliferation. Subsequent studies, utilizing an in vivo approach, indicated that CD4+ T cells were not required for CD8+-T-cell-mediated cytolytic function (23). CD4+ T cells are thought to provide help by conditioning DC in a cognate, antigen-specific manner, thereby making them competent to stimulate HSV-1-specific CD8+-T-cell responses (37). By contrast, findings from other studies show that CD4+-T-cell-depleted mice were able to fully recover from acute infection with HSV-1 (38). These studies imply that the absence of CD4+ T cells does not prevent priming of CD8+ T cells in vivo.Studies from this laboratory have identified two distinct HSV-1-specific CD8+-T-cell subpopulations generated during the primary response, based upon the ability to synthesize IFN-γ following antigenic stimulation in vitro (1). To better understand the need for CD4+-T-cell help, we examined the functional characteristics and phenotypes of these CD8+-T-cell populations generated during a primary response to acute infection with HSV-1 in mice lacking CD4+ T cells. Our findings show that primary CD8+-T-cell responses to HSV-1 are compromised in the absence of CD4+-T-cell help. Specifically, the HSV-1 gB-specific CD8+ T cells produced in the absence of CD4+ T cells were found to be active with regard to cytolysis in vivo but were functionally impaired in the production of IFN-γ and TNF-α compared with intact C57BL/6 mice. Virus-specific CD8+ T cells were also reduced in number in CD4-depleted mice and in B6 mice lacking major histocompatibility complex (MHC) class II expression (B6-MHC-II−/−) compared to wild-type (WT) mice. In addition, our data showed higher virus burdens in the infectious tissues obtained from mice lacking CD4+ T cells than in those from intact mice. Collectively, these findings demonstrate that CD4+-T-cell help is essential for the generation of primary CD8+-T-cell responses following acute cutaneous infection with HSV-1. 相似文献
3.
Eleonora Li Causi Suraj C. Parikh Lindsey Chudley David M. Layfield Christian H. Ottensmeier Freda K. Stevenson Gianfranco Di Genova 《PloS one》2015,10(9)
CD4+ T helper memory (Thmem) cells influence both natural and vaccine-boosted immunity, but mechanisms for their maintenance remain unclear. Pro-survival signals from the common gamma-chain cytokines, in particular IL-7, appear important. Previously we showed in healthy volunteers that a booster vaccination with tetanus toxoid (TT) expanded peripheral blood TT-specific Thmem cells as expected, but was accompanied by parallel increase of Thmem cells specific for two unrelated and non cross-reactive common recall antigens. Here, in a new cohort of healthy human subjects, we compare blood vaccine-specific and bystander Thmem cells in terms of differentiation stage, function, activation and proliferative status. Both responses peaked 1 week post-vaccination. Vaccine-specific cytokine-producing Thmem cells were predominantly effector memory, whereas bystander cells were mainly of central memory phenotype. Importantly, TT-specific Thmem cells were activated (CD38High HLA-DR+), cycling or recently divided (Ki-67+), and apparently vulnerable to death (IL-7RαLow and Bcl-2 Low). In contrast, bystander Thmem cells were resting (CD38Low HLA-DR- Ki-67-) with high expression of IL-7Rα and Bcl-2. These findings allow a clear distinction between vaccine-specific and bystander Thmem cells, suggesting the latter do not derive from recent proliferation but from cells mobilized from as yet undefined reservoirs. Furthermore, they reveal the interdependent dynamics of specific and bystander T-cell responses which will inform assessments of responses to vaccines. 相似文献
4.
Kristin L. Boswell Robert Paris Eli Boritz David Ambrozak Takuya Yamamoto Sam Darko Kaska Wloka Adam Wheatley Sandeep Narpala Adrian McDermott Mario Roederer Richard Haubrich Mark Connors Julie Ake Daniel C. Douek Jerome Kim Constantinos Petrovas Richard A. Koup 《PLoS pathogens》2014,10(1)
The interaction between follicular T helper cells (TFH) and B cells in the lymph nodes and spleen has a major impact on the development of antigen-specific B cell responses during infection or vaccination. Recent studies described a functional equivalent of these cells among circulating CD4 T cells, referred to as peripheral TFH cells. Here, we characterize the phenotype and in vitro B cell helper activity of peripheral TFH populations, as well as the effect of HIV infection on these populations. In co-culture experiments we confirmed CXCR5+ cells from HIV-uninfected donors provide help to B cells and more specifically, we identified a CCR7highCXCR5highCCR6highPD-1high CD4 T cell population that secretes IL-21 and enhances isotype-switched immunoglobulin production. This population is significantly decreased in treatment-naïve, HIV-infected individuals and can be recovered after anti-retroviral therapy. We found impaired immunoglobulin production in co-cultures from HIV-infected individuals and found no correlation between the frequency of peripheral TFH cells and memory B cells, or with neutralization activity in untreated HIV infection in our cohort. Furthermore, we found that within the peripheral TFH population, the expression level of TFH-associated genes more closely resembles a memory, non-TFH population, as opposed to a TFH population. Overall, our data identify a heterogeneous population of circulating CD4 T cells that provides in vitro help to B cells, and challenges the origin of these cells as memory TFH cells. 相似文献
5.
6.
We show that the in vivo generation of cytokine-producing CD4 T cells specific for a given major histocompatibility class-II (MHCII)-binding peptide of hen egg lysozyme (HEL) is facilitated when mice are immunized with splenic antigen presenting cells (APC) pulsed with this HEL peptide and another peptide that binds a different MHCII molecule. This enhanced generation of peptide-specific effector CD4 T cells requires that the same splenic APC be pulsed with both peptides. Pulsed B cells, but not pulsed dendritic cells (DCs), can mediate CD4 T cell cooperation, which can be blocked by disrupting OX40-OX40L (CD134-CD252) interactions. In addition, the generation of HEL peptide-specific CD4 T cell memory is greater when mice are primed with B cells pulsed with the two peptides than with B cells pulsed with the HEL- peptide alone. Based on our findings, we suggest CD4 T cell cooperation is important for vaccine design, underlies the phenomenon of “epitope-spreading” seen in autoimmunity, and that the efficacy of B cell-depletion in the treatment of human cell-mediated autoimmune disease is due to the abrogation of the interactions between autoimmune CD4 T cells that facilitates their activation. 相似文献
7.
AM Blum L Hang T Setiawan JP Urban KM Stoyanoff J Leung JV Weinstock 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(5):2512-2520
Immunological diseases such as inflammatory bowel disease (IBD) are infrequent in less developed countries, possibly because helminths provide protection by modulating host immunity. In IBD murine models, the helminth Heligmosomoides polygyrus bakeri prevents colitis. It was determined whether H. polygyrus bakeri mediated IBD protection by altering dendritic cell (DC) function. We used a Rag IBD model where animals were reconstituted with IL10(-/-) T cells, making them susceptible to IBD and with OVA Ag-responsive OT2 T cells, allowing study of a gut antigenic response. Intestinal DC from H. polygyrus bakeri-infected Rag mice added to lamina propria mononuclear cells (LPMC) isolated from colitic animals blocked OVA IFN-γ/IL-17 responses in vitro through direct contact with the inflammatory LPMC. DC from uninfected Rag mice displayed no regulatory activity. Transfer of DC from H. polygyrus bakeri-infected mice into Rag mice reconstituted with IL10(-/-) T cells protected animals from IBD, and LPMC from these mice lost OVA responsiveness. After DC transfer, OT2 T cells populated the intestines normally. However, the OT2 T cells were rendered Ag nonresponsive through regulatory action of LPMC non-T cells. The process of regulation appeared to be regulatory T cell independent. Thus, H. polygyrus bakeri modulates intestinal DC function, rendering them tolerogenic. This appears to be an important mechanism through which H. polygyrus bakeri suppresses colitis. IFN-γ and IL-17 are colitogenic. The capacity of these DC to block a gut Ag-specific IFN-γ/IL-17 T cell response also is significant. 相似文献
8.
Corin L. Dorfmeier Andrew G. Lytle Amber L. Dunkel Anthony Gatt James P. McGettigan 《Journal of virology》2012,86(21):11533-11540
A major goal in rabies virus (RV) research is to develop a single-dose postexposure prophylaxis (PEP) that would simplify vaccination protocols, reduce costs associated with rabies prevention in humans, and save lives. Live replication-deficient RV-based vaccines are emerging as promising single-dose vaccines to replace currently licensed inactivated RV-based vaccines. Nonetheless, little is known about how effective B cells develop in response to live RV-based vaccination. Understanding this fundamental property of rabies immunology may help in developing a single-dose RV vaccine. Typically, vaccines induce B cells secreting high-affinity, class-switched antibodies during germinal center (GC) reactions; however, there is a lag time between vaccination and the generation of GC B cells. In this report, we show that RV-specific antibodies are detected in mice immunized with live but not inactivated RV-based vaccines before B cells displaying a GC B cell phenotype (B220+GL7hiCD95hi) are formed, indicating a potential role for T cell-independent and early extrafollicular T cell-dependent antibody responses in the protection against RV infection. Using two mouse models of CD4+ T cell deficiency, we show that B cells secreting virus-neutralizing antibodies (VNAs) are induced via T cell-independent mechanisms within 4 days postimmunization with a replication-deficient RV-based vaccine. Importantly, mice that are completely devoid of T cells (B6.129P2-Tcrβtm1Mom
Tcrδtm1Mom/J) show protection against pathogenic challenge shortly after immunization with a live replication-deficient RV-based vaccine. We show that vaccines that can exploit early pathways of B cell activation and development may hold the key for the development of a single-dose RV vaccine wherein the rapid induction of VNA is critical. 相似文献
9.
Janina Jiang Ouafae Karimi Sander Ouburg Cheryl I. Champion Archana Khurana Guangchao Liu Amanda Freed Jolein Pleijster Nora Rozengurt Jolande A. Land Helja-Marja Surcel Aila' Tiitinen Jorma Paavonen Mitchell Kronenberg Servaas A. Morré Kathleen A. Kelly 《PloS one》2012,7(11)
Background
Regulation of immune responses is critical for controlling inflammation and disruption of this process can lead to tissue damage. We reported that CXCL13 was induced in fallopian tube tissue following C. trachomatis infection. Here, we examined the influence of the CXCL13-CXCR5 axis in chlamydial genital infection.Methodology and Principal Findings
Disruption of the CXCL13-CXCR5 axis by injecting anti-CXCL13 Ab to BALB/c mice or using Cxcr5−/− mice increased chronic inflammation in the upper genital tract (UGT; uterine horns and oviducts) after Chlamydia muridarum genital infection (GT). Further studies in Cxcr5−/− mice showed an elevation in bacterial burden in the GT and increased numbers of neutrophils, activated DCs and activated NKT cells early after infection. After resolution, we noted increased fibrosis and the accumulation of a variety of T cells subsets (CD4-IFNγ, CD4-IL-17, CD4-IL-10 & CD8-TNFα) in the oviducts. NKT cell depletion in vitro reduced IL-17α and various cytokines and chemokines, suggesting that activated NKT cells modulate neutrophils and DCs through cytokine/chemokine secretion. Further, chlamydial glycolipids directly activated two distinct types of NKT cell hybridomas in a cell-free CD1d presentation assay and genital infection of Cd1d−/− mice showed reduced oviduct inflammation compared to WT mice. CXCR5 involvement in pathology was also noted using single-nucleotide polymorphism analysis in C. trachomatis infected women attending a sub-fertility clinic. Women who developed tubal pathology after a C. trachomatis infection had a decrease in the frequency of CXCR5 SNP +10950 T>C (rs3922).Conclusions/Significance
These experiments indicate that disruption of the CXCL13-CXCR5 axis permits increased activation of NKT cells by type I and type II glycolipids of Chlamydia muridarum and results in UGT pathology potentially through increased numbers of neutrophils and T cell subsets associated with UGT pathology. In addition, CXCR5 appears to contribute to inter-individual differences in human tubal pathology following C. trachomatis infection. 相似文献10.
Jayarapu K Kerr M Ofner S Johnson RM 《Journal of immunology (Baltimore, Md. : 1950)》2010,185(11):6911-6920
Chlamydia trachomatis serovars D-K are sexually transmitted intracellular bacterial pathogens that replicate in epithelial cells lining the human reproductive tract. It is clear from knockout mice and T cell depletion studies using Chlamydia muridarum that MHC class II and CD4 T cells are critical for clearing bacteria from the murine genital tract. It is not clear how CD4 T cells interact with infected epithelial cells to mediate bacterial clearance in vivo. Previous work using an epithelial tumor cell line showed that a Chlamydia-specific CD4 T cell clone was able to inhibit C. muridarum replication in vitro via induction of epithelial NO production. We have previously shown that Chlamydia-specific CD4 T cell clones can recognize and be activated by infected reproductive tract epithelial cells and block Chlamydia replication in them. We extend those observations by investigating the mechanism used by a panel of CD4 T cell clones to control Chlamydia replication in epithelial cells. We found that Chlamydia-specific CD4 T cell clones were cytolytic, but that cytolysis was not likely critical for controlling C. muridarum replication. For one, CD4 T cell clone-induced epithelial NO production was critical for controlling replication; however, the most potent CD4 T cell clones were dependent on T cell degranulation for replication control with only a minor additional contribution from NO production. We discuss our data as they relate to existing knockout mouse studies addressing mechanisms of T cell-mediated control of Chlamydia replication and their implications for intracellular epithelial pathogens in mouse models. 相似文献
11.
12.
Shabnam Alam Zackery A. G. Knowlden Mark Y. Sangster Andrea J. Sant 《Journal of virology》2014,88(1):314-324
Influenza virus vaccination strategies are focused upon the elicitation of protective antibody responses through administration of viral protein through either inactivated virions or live attenuated virus. Often overlooked in this strategy is the CD4 T cell response: how it develops into memory, and how it may support future primary B cell responses to heterologous infection. Through the utilization of a peptide-priming regimen, this study describes a strategy for developing CD4 T cell memory with the capacity to robustly expand in the lung-draining lymph node after live influenza virus infection. Not only were frequencies of antigen-specific CD4 T cells enhanced, but these cells also supported an accelerated primary B cell response to influenza virus-derived protein, evidenced by high anti-nucleoprotein (NP) serum antibody titers early, while there is still active viral replication ongoing in the lung. NP-specific antibody-secreting cells and heightened frequencies of germinal center B cells and follicular T helper cells were also readily detectable in the draining lymph node. Surprisingly, a boosted memory CD4 T cell response was not sufficient to provide intermolecular help for antibody responses. Our study demonstrates that CD4 T cell help is selective and limiting to the primary antibody response to influenza virus infection and that preemptive priming of CD4 T cell help can promote effective and rapid conversion of naive B cells to mature antibody-secreting cells. 相似文献
13.
[目的]对沙眼衣原体在BALB/c小鼠肺部感染过程中CD4+ CD25+Foxp3+调节性T细胞(regulatory T cells,Treg)与Th17反应关系进行初步探讨.[方法]取6-8周龄的BALB/c小鼠,鼻腔吸入25 μL含5×103 IFU的沙眼衣原体鼠肺炎菌株(Chlamydia muridarum,Cm),建立沙眼衣原体小鼠肺感染模型.监测感染后不同时期小鼠体重变化;检测肺组织衣原体包涵体形成单位( IFU)及肺组织病理改变;利用流式细胞术检测Cm感染后小鼠体内Treg细胞百分率;ELISA检测肺组织上清液IL-6、TGF-β、IL-17、IL-2细胞因子的的表达;qRT-PCR检测KC( keratinocyte derived chemokine) mRNA和MIP-2( macrophage inflammatory protein-2)mRNA的表达差异.[结果]用5xl03 IFU Cm经鼻腔吸人感染后小鼠发生沙眼衣原体肺炎,表现为体重下降、肺组织大量炎症细胞浸润并可检测到衣原体繁殖.Cm感染后第3天,小鼠体内Treg细胞占CD4 +T细胞的百分比明显降,随后开始恢复,第7天恢复原来水平,一直持续到衣原体清除.TGF-β、IL-2的表达与Treg细胞动态变化一致.与Th17相关细胞因子IL-6、IL-17和Th17相关趋化因子KC、MIP-2的表达于第3天开始升高,至第7天达到最高水平,随后逐渐减少.[结论]在衣原体感染BALB/c小鼠过程中,Treg可能通过提供TGF-β并在IL-6帮助下促进Th17应答产生. 相似文献
14.
Li W Murthy AK Guentzel MN Seshu J Forsthuber TG Zhong G Arulanandam BP 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(5):3375-3382
Chlamydia has been shown to evade host-specific IFN-gamma-mediated bacterial killing; however, IFN-gamma-deficient mice exhibit suboptimal late phase vaginal Chlamydia muridarum clearance, greater dissemination, and oviduct pathology. These findings introduce constraints in understanding results from murine chlamydial vaccination studies in context of potential implications to humans. In this study, we used mice deficient in either IFN-gamma or the IFN-gamma receptor for intranasal vaccination with a defined secreted chlamydial Ag, chlamydial protease-like activity factor (CPAF), plus CpG and examined the role of IFN-gamma derived from adoptively transferred Ag-specific CD4+ T cells in protective immunity against genital C. muridarum infection. We found that early Ag-specific IFN-gamma induction and CD4+ T cell infiltration correlates with the onset of genital chlamydial clearance. Adoptively transferred IFN-gamma competent CPAF-specific CD4+ T cells failed to enhance the resolution of genital chlamydial infection within recipient IFN-gamma receptor-deficient mice. Conversely, IFN-gamma production from adoptively transferred CPAF-specific CD4+ T cells was sufficient in IFN-gamma-deficient mice to induce early resolution of infection and reduction of subsequent pathology. These results provide the first direct evidence that enhanced anti-C. muridarum protective immunity induced by Ag-specific CD4+ T cells is dependent upon IFN-gamma signaling and that such cells produce sufficient IFN-gamma to mediate the protective effects. Additionally, MHC class II pathway was sufficient for induction of robust protective anti-C. muridarum immunity. Thus, targeting soluble candidate Ags via MHC class II to CD4+ T cells may be a viable vaccine strategy to induce optimal IFN-gamma production for effective protective immunity against human genital chlamydial infection. 相似文献
15.
Beyond their critical role in humoral immunity, B lymphocytes can employ a variety of immunomodulatory mechanisms including expression of the apoptosis-inducing molecule Fas ligand (FasL; CD178). Here, we extensively characterized the surface phenotype of FasL+ killer B cells, showing they are enriched in the IgMhighCD5+CD1dhigh B cell subset previously reported to contain a higher frequency of B cells producing interleukin-10 (IL-10). A rare population of B cells expressing IL-10 was present among FasL+ B cells, but most FasL+ B cells did not produce IL-10. We also identify interleukin-5 (IL-5) as a novel inducer of killer B cell function. Constitutively FasL+ B cells expressed higher levels of the IL-5 receptor, and treating B cells with IL-5 and CD40L resulted in the expansion of a B cell population enriched for FasL+ cells. B cells stimulated with IL-5 and CD40L were potent inducers of apoptosis in activated primary CD4+ T cells, and this killing function was antigen-specific and dependent upon FasL. IL-5 also enhanced IL-10 secretion in B cells stimulated with CD40L. Taken together these findings elucidate the relationship of FasL+ B cells and IL-10-producing B cells and demonstrate that IL-5 can induce or enhance both killer B cell activity and IL-10 secretion in B cells. Finally, we found that the killer B cell activity induced by IL-5 was completely blocked by IL-4, suggesting the existence of a previously unknown antagonistic relationship between these type-2 cytokines in modulating the activity of killer B cells. Targeting this IL-5/IL-4 signaling axis may therefore represent a novel area of drug discovery in inflammatory disorders. 相似文献
16.
Rachel Lubong Sabado Daniel G. Kavanagh Daniel E. Kaufmann Karlhans Fru Ethan Babcock Eric Rosenberg Bruce Walker Jeffrey Lifson Nina Bhardwaj Marie Larsson 《PloS one》2009,4(1)
Background
The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission.Methodology
The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited.Findings
Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4+ and CD8+ T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4+ T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4+ T cell depletion which renders the newly activated HIV-specific CD4+ T cells prime targets for elimination.Conclusion
Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo. 相似文献17.
Stimulating naïve CD8+ T cells with specific antigens and costimulatory signals is insufficient to induce optimal clonal expansion and effector functions. In this study, we show that the activation and differentiation of CD8+ T cells require IL-2 provided by activated CD4+ T cells at the initial priming stage within 0–2.5 hours after stimulation. This critical IL-2 signal from CD4+ cells is mediated through the IL-2Rβγ of CD8+ cells, which is independent of IL-2Rα. The activation of IL-2 signaling advances the restriction point of the cell cycle, and thereby expedites the entry of antigen-stimulated CD8+ T-cell into the S phase. Besides promoting cell proliferation, IL-2 stimulation increases the amount of IFNγ and granzyme B produced by CD8+ T cells. Furthermore, IL-2 at priming enhances the ability of P14 effector cells generated by antigen activation to eradicate B16.gp33 tumors in vivo. Therefore, our studies demonstrate that a full CD8+ T-cell response is elicited by a critical temporal function of IL-2 released from CD4+ T cells, providing mechanistic insights into the regulation of CD8+ T cell activation and differentiation. 相似文献
18.
Background
Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs) that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression.Methodology/Principal Findings
We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells.Conclusions/Significance
This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs. 相似文献19.
Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions. 相似文献
20.
The invention of peptide-MHC-tetramer technology to label antigen-specific T cells has led to an enhanced understanding of T lymphocyte biology. Here we describe the development of an in situ pMHC-II tetramer staining method to visualize antigen-specific CD4+ T cells in tissues. This method complements other methods developed that similarly use MHC class II reagents to stain antigen-specific CD4+ T cells in situ. In this study, we used group A streptococcus (GAS) expressing a surrogate peptide (2W) to inoculate C57BL/6 mice, and used fresh nasal-associated lymphoid tissues (NALT) in optimizing the in situ staining of 2W:I-Ab specific CD4+ T cells. The results showed 2W:I-Ab tetramer-binding CD4+ T cells in GAS-2W but not GAS infected mice. This method holds promise to be broadly applicable to study the localization, abundance, and phenotype of antigen-specific CD4+ T cells in undisrupted tissues. 相似文献