首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objective

Invasive pneumococcal disease (IPD) is a leading cause of morbidity and mortality in HIV-infected African adults. CD4 T cell depletion may partially explain this high disease burden but those with relatively preserved T cell numbers are still at increased risk of IPD. This study evaluated the extent of pneumococcal-specific T cell memory dysfunction in asymptomatic HIV infection early on in the evolution of the disease.

Methods

Peripheral blood mononuclear cells were isolated from asymptomatic HIV-infected and HIV-uninfected Malawian adults and stained to characterize the underlying degree of CD4 T cell immune activation, senescence and regulation. Pneumococcal-specific T cell proliferation, IFN-γ, IL-17 production and CD154 expression was assessed using flow cytometry and ELISpot.

Results

We find that in asymptomatic HIV-infected Malawian adults, there is considerable immune disruption with an increase in activated and senescent CD4+CD38+PD-1+ and CD4+CD25highFoxp3+ Treg cells. In the context of high pneumococcal exposure and therefore immune stimulation, show a failure in pneumococcal-specific memory T cell proliferation, skewing of T cell cytokine production with preservation of interleukin-17 but decreased interferon-gamma responses, and failure of activated T cells to express the co-stimulatory molecule CD154.

Conclusion

Asymptomatic HIV-infected Malawian adults show early signs of pneumococcal- specific immune dysregulation with a shift in the balance of CD4 memory, T helper 17 cells and Treg. Together these data offer a mechanistic understanding of how antigen-specific T cell dysfunction occurs prior to T cell depletion and may explain the early susceptibility to IPD in those with relatively preserved CD4 T cell numbers.  相似文献   

2.
Worldwide, invasive pneumococcal disease caused by Streptococcus pneumoniae is most common in young children. In adults, disease rates decline following intermittent colonization and the acquisition of naturally acquired immunity. We characterized mucosal and systemic pneumococcal-specific T-cell responses in African children and adults who contend with intense rates of colonization, up to 100% and 60% respectively. We find most Malawian children have high pneumococcal-specific T-cell responses in tonsil tissue and peripheral blood. In addition, frequent commensalism generates CD25hi (Tregs) which modulate mucosal pneumococcal-specific T-cell responses in some children and ≥50% of adults. We propose that immune regulation may prolong pneumococcal colonization and predispose vulnerable individuals to disease.  相似文献   

3.
In recent years, the prevalence of HIV-1 infection has been rapidly increasing among men who have sex with men (MSM). However, it remains unknown how the host immune system responds to the infection in this population. We assessed the quantity of HIV-specific CD8+ T-cell responses by using Elispot assay and their functionalities by measuring 5 CD8+ T-cell evaluations (IL-2, MIP-1β, CD107a, TNF-α, IFN-γ) with flow cytometry assays among 18 primarily and 37 early chronically HIV-infected MSM. Our results demonstrated that subjects at early chronic phase developed HIV-specific CD8+ T-cell responses with higher magnitudes and more diversified functionalities in comparison with those at primary infection. However, populations with IL-2+ CD107a+ or in combination with other functionality failed to develop in parallel. The multifunctional but not monofunctional HIV-specific CD8+ T cells were associated with higher CD4+ T -cell counts and lower viral loads. These data revealed that prolonged infection from primary to early chronic infection could selectively increase the functionalities of HIV-specific CD8+ T cells in HIV-infected MSM population, the failure to develop IL-2 and cytotoxic functionalities in parallel may explain why the increased HIV-specific CD8+ T cells were unable to enhance the containment of HIV-1 replication at the early chronic stage.  相似文献   

4.
Naive T cells in untreated HIV-1 infected individuals have a reduced T-cell receptor excision circle (TREC) content. Previous mathematical models have suggested that this is due to increased naive T-cell division. It remains unclear, however, how reduced naive TREC contents can be reconciled with a gradual loss of naive T cells in HIV-1 infection. We performed longitudinal analyses in humans before and after HIV-1 seroconversion, and used a mathematical model to investigate which processes could explain the observed changes in naive T-cell numbers and TRECs during untreated HIV-1 disease progression. Both CD4+ and CD8+ naive T-cell TREC contents declined biphasically, with a rapid loss during the first year and a much slower loss during the chronic phase of infection. While naive CD8+ T-cell numbers hardly changed during follow-up, naive CD4+ T-cell counts continually declined. We show that a fine balance between increased T-cell division and loss in the peripheral naive T-cell pool can explain the observed short- and long-term changes in TRECs and naive T-cell numbers, especially if T-cell turnover during the acute phase is more increased than during the chronic phase of infection. Loss of thymic output, on the other hand, does not help to explain the biphasic loss of TRECs in HIV infection. The observed longitudinal changes in TRECs and naive T-cell numbers in HIV-infected individuals are most likely explained by a tight balance between increased T-cell division and death, suggesting that these changes are intrinsically linked in HIV infection.  相似文献   

5.
Untreated HIV infection results in severe perturbations of the B-cell population and hyporesponsiveness to vaccination. We studied associations between circulating B-cell subsets and antibody response to pneumococcal conjugate vaccine in treated and untreated HIV patients.Ninety-five HIV-infected adults were grouped according to antiretroviral therapy (ART) and CD4+ cell count as follows: 20 ART-naïve (no prior ART), 62 ART-responders (received ART, and CD4 count >500 cells/µl), and 13 impaired responders (received ART for more than 3 years, and CD4 count <500 cells/µl). All subjects were immunized twice with double-dose 7-valent pneumococcal conjugate vaccine with or without 1 mg CPG 7909 (toll-like receptor 9 agonist) at baseline and after three months. Pre-vaccination B-cell subpopulations were assessed by flow cytometry. Serum IgG concentrations for vaccine serotypes were quantified by ELISA at baseline and 3, 4, and 9 months post-vaccination. ART responders had more isotype-switched memory B cells and more marginal-zone (MZ)-like B cells compared with impaired responders. Furthermore, ART-naïve patients had higher concentration of transitional B cells and plasmablasts compared with B cells of other patient groups. The concentration of MZ-like, isotype switched memory cells and plasmablasts correlated positively with post-vaccination IgG concentration at 3, 4, and 9 months. Low concentrations of isotype-switched memory B cells was the strongest independent predictor of poor pneumococcal conjugate vaccine responsiveness, emphasizing that B-cell subset disturbances are associated with poor vaccine response among HIV-infected patients  相似文献   

6.
CD4+CD25+ Regulatory T cells (Treg) have been found to down-regulate immune activation in HIV-1 infection. However, whether the depletion of Treg benefits to the disease status of HIV infection remains undefined. To address this issue, we enumerated the Treg absolute counts and frequency in 75 antiviral-naïve HIV-1-infected individuals in this study. It was found that HIV-infected patients displayed a significant decline in Treg absolute counts but a significant increase in Treg frequency. In addition, with disease progression indicated by CD4 T-cell absolute counts, circulating Treg frequency gradually increased; while Treg absolute counts were gradually decreased, suggesting that the alteration of Treg number closely correlated with disease progression in HIV infection. Functional analysis further showed that Treg efficiently inhibit both CD4 and CD8 T cell proliferation in vitro. Thus, our findings indicates that Treg actively participate in pathogenesis of chronic HIV infection, influencing the disease progression.  相似文献   

7.
CD4+ central memory T cells play a critical role in the pathogenesis of simian immunodeficiency virus disease, and the CCR5 density on the surface of CD4 T cells is an important factor in human immunodeficiency virus (HIV)-1 disease progression. We hypothesized that quantifying central memory cells and CCR5 expression in the early stages of HIV-infection could provide useful prognostic information. We enrolled two different groups of acute HIV-infected subjects. One group progressed to CD4 T cell numbers below 250 cells/µl within 2 years (CD4 Low group), while the other group maintained CD4 cell counts above 450 cells/µl over 2 years (CD4 High group). We compared the CCR5 levels and percentage of CD4 subsets between the two groups during the 1st year of HIV infection. We found no differences between the two groups regarding the percentage of naïve, central memory and effector memory subsets of CD4 cells during the 1st year of HIV-1 infection. CCR5 levels on CD4+ CM subset was higher in the CD4 Low group compared with the CD4 High group during the 1st year of HIV-1 infection. High CCR5 levels on CD4 central memory cells in acute HIV infection are mostly associated with rapid disease progression. Our data suggest that low CCR5 expression on CD4 central memory cells protects CD4 cells from direct virus infection and favors the preservation of CD4+ T cell homeostasis.  相似文献   

8.
HIV replication can be inhibited by CXCR5+CD8 T cells (follicular cytotoxic T cell [TFC]) which transfer into B-cell follicles where latent HIV infection persists. However, how cytokines affect TFC remain unclear. Understanding which cytokines show the ability to affect TFC could be a key strategy toward curing HIV. Similar mechanisms could be used for the growth and transfer of TFCs and follicular helper T (TFH) cells; as a result, we hypothesized that cytokines IL-6, IL-21, and transforming growth factor-β (TGF-β), which are necessary for the differentiation of TFH cells, could also dictate the development of TFCs. In this work, lymph node mononuclear cells and peripheral blood mononuclear cells from HIV-infected individuals were cocultured with IL-6, IL-21, and TGF-β. We then carried out T-cell receptor (TCR) repertoire analysis to compare the differences between CXCR5 and CXCR5+CD8 T cells. Our results showed that the percentage and function of TFC can be enhanced by stimulation with TGF-β. Besides, TGF-β stimulation enhanced the diversity of TCR and complementarity-determining region 3 sequences. HIV DNA showed a negative correlation with TFC. The use of TGF-β to promote the expression of CXCR5+CD8 T cells could become a new treatment approach for curing HIV.  相似文献   

9.
Despite eliciting a robust antibody response in humans, several studies in human immunodeficiency virus (HIV)-infected patients have demonstrated the presence of B-cell deficiencies during the chronic stage of infection. While several explanations for the HIV-induced B-cell deficit have been proposed, a clear mechanistic understanding of this loss of B-cell functionality is not known. This study utilizes simian immunodeficiency virus (SIV) infection of rhesus macaques to assess B-cell population dynamics beginning at the acute phase and continuing through the chronic phase of infection. Flow cytometric assessment demonstrated a significant early depletion of both naïve and memory B-cell subsets in the peripheral blood, with differential kinetics for recovery of these populations. Furthermore, the altered numbers of naïve and memory B-cell subsets in these animals corresponded with increased B-cell activation and altered proliferation profiles during the acute phase of infection. Finally, all animals produced high titers of antibody, demonstrating that the measurement of virus-specific antibody responses was not an accurate reflection of alterations in the B-cell compartment. These data indicate that dynamic B-cell population changes in SIV-infected macaques arise very early after infection at the precise time when an effective adaptive immune response is needed.Effective B-cell responses result in the generation of memory B-cell populations which are able to proliferate and produce antibodies that can control primary and secondary insults by microbial pathogens (2). Impaired maturation and timing of B-cell-mediated immune responses result in the production of ineffective antibodies, which are unable to control infection and may result in the persistence of the pathogen (36). Although human immunodeficiency virus (HIV) infection generally elicits high-titer antibodies, virus-specific titers do not correlate with delayed clinical progression, suggesting that antibodies produced during HIV infection are not sufficient to provide long-term viral control (6). Ineffective antibody production in the context of HIV infection could be a result of numerous T-cell and B-cell abnormalities induced either directly or indirectly through infection. B-cell perturbations, characterized during chronic infection, include hypergammaglobulinemia (11, 31), a diminished in vitro response to mitogenic stimulation (10, 37), diminished antibody responses to vaccination (15, 23), and loss of memory B-cell subsets (3, 10, 37). It is highly likely that these B-cell abnormalities are linked with the inability of HIV-infected individuals to form effective antibody responses to HIV and opportunistic pathogens.B-cell perturbations during acute HIV infection may lead to dysfunctions observed during chronic infection. Despite numerous reports that hypothesized that B-cell phenotypic and functional abnormalities arise due to the effects of chronic infection, a limited number of acute infection studies have provided evidence that B-cell dysfunctions may be initiated much earlier. Studies by De Milito et al. and others have reported a decrease in CD27+ B cells associated with chronic HIV infection (3, 4, 10-12, 15, 30, 31, 36-38, 40). The reduction of this population may explain the diminished antibody responses to non-HIV antigens present in HIV-infected individuals. However, the mechanism for this loss of memory B cells during chronic infection is unclear. One possibility is that B-cell losses are related to reduced T-cell numbers. In a study by Titanji et al., a strong correlation between the number of CD4 T cells and the percentage of memory B cells was reported in chronic HIV infection (37). Conversely, others have reported that no correlation was found between CD4 numbers and memory B-cell numbers (3, 10). Interestingly, reductions in percentages of B cells, increased expression of Fas on B cells, increased total plasma IgG levels, a decreased percentage of IgM memory B cells, and decreased B-cell responses to antigenic stimulation have been shown to occur within 6 months of HIV infection (36, 37). Disruption of germinal centers in the gut during acute HIV infection may also compromise the humoral immune response (20). While these studies provide insight into virus-induced changes in the B-cell compartment during infection, it is difficult to ascertain precisely when these changes occur, due to limitations in sample size and numbers during this early period of infection. The conflicting reports reflect the high amount of variability present in human HIV infection and illuminate the need for a model to study B-cell populations in which experimental parameters can be more rigorously controlled. An understanding of the effects of HIV on the B-cell population during this critical early phase of infection is needed to determine how the initial interactions between virus and host immune system set the stage for long-term disease progression in the infected host. The simian immunodeficiency virus (SIV)/macaque model provides a system in which to ask these questions.Studies in SIV-infected macaques have demonstrated that the number of total B (CD20+) cells in the periphery decreases dramatically during the acute phase of infection (13, 24). The loss of these cells coincides with a similar depletion of peripheral CD4 T cells and is associated with primary viremia. Interestingly, the loss of total B cells is greater in magnitude than the loss of CD4+ T cells (24). In order to understand how these cells are being depleted, it is necessary to characterize B-cell subsets during SIV infection in the macaque. The present study was designed to assess phenotypic changes in B-cell numbers during the acute phase of SIV infection, both in the total B-cell population as well as in B-cell subsets. Our results identified early, rapid changes in B-cell subsets that were not apparent in analysis of the total B-cell population. Specifically, we identified a significant depletion from the periphery of both the naïve (CD20+ CD27) and memory (CD20+ CD27+) B-cell populations during acute infection and increased total B-cell population activation that may be related to ineffective antibody production commonly associated with SIV infection. Furthermore, the data demonstrate that measurement of envelope-specific antibody responses was not a sensitive reflection of SIV effects on B-cell subsets. These data provide novel information about the timing and dynamics of phenotypic changes in the B-cell compartment during SIV infection that may be associated with functional changes observed later in chronic infection. These results can be used to tailor therapeutic treatments designed to preserve the B-cell compartment early in SIV/HIV infection.  相似文献   

10.
It is well accepted that aging and HIV infection are associated with quantitative and functional changes of CMV-specific T cell responses. We studied here the expression of Mip-1β and the T cell maturation marker CD27 within CMVpp65-specific CD4+ and CD8+ T cells in relation to age, HIV and active Tuberculosis (TB) co-infection in a cohort of Tanzanian volunteers (≤16 years of age, n = 108 and ≥18 years, n = 79). Independent of HIV co-infection, IFNγ+ CMVpp65-specific CD4+ T cell frequencies increased with age. In adults, HIV co-infection further increased the frequencies of these cells. A high capacity for Mip-1β production together with a CD27low phenotype was characteristic for these cells in children and adults. Interestingly, in addition to HIV co-infection active TB disease was linked to further down regulation of CD27 and increased capacity of Mip-1β production in CMVpp65-specific CD4+ T cells. These phenotypic and functional changes of CMVpp65-specific CD4 T cells observed during HIV infection and active TB could be associated with increased CMV reactivation rates.  相似文献   

11.
An effort was made to understand the role of the 57 kDa major antigenic fraction of Shigella outer membrane protein (OMP) in the presence of T-cell antigen receptor in activation of adaptive immune responses of the cell mediated immune (CMI) restored patients. The expression of HLA-DR/CD4 out of CD3+ T-cells was significantly dominant over the HLA-DR/CD8 and comparable to unstimulated cells of infected or healthy controls. CD4+ T-cell activation together with HLA-DR is associated with the expression of CD25+ (IL2Rα) for IL-2 growth factors with decreased IL-4 levels, required for maintaining the homeostasis of CD4+ T cell. Furthermore, the positive expression of the CD45 antigen is possibly required for acquiring the memory for CD4+ cells signals and facilitates the interaction with CD54 antigen. As a result, antigen-specific secondary signal is generated for B-cell activation to produce IgG2a and IgG2b. This suggests that antibody mediated-adaptive immune responses are generated due to anti-CD3 induced helper T-cell activity. The above mentioned findings reflect that the antigen alone might not exacerbate the selective T-cell responses. But these antigens in the presence of anti-CD3 antibody might help to elicit adaptive immune response via T-cell receptor (TCR) activation.  相似文献   

12.
Cytomegalovirus (CMV) infection has a major impact on the T-cell pool, which is thought to be associated with ageing of the immune system. The effect on the T-cell pool has been interpreted as an effect of CMV on non-CMV specific T-cells. However, it remains unclear whether the effect of CMV could simply be explained by the presence of large, immunodominant, CMV-specific memory CD8+ T-cell populations. These have been suggested to establish through gradual accumulation of long-lived cells. However, little is known about their maintenance. We investigated the effect of CMV infection on T-cell dynamics in healthy older adults, and aimed to unravel the mechanisms of maintenance of large numbers of CMV-specific CD8+ T-cells. We studied the expression of senescence, proliferation, and apoptosis markers and quantified the in vivo dynamics of CMV-specific and other memory T-cell populations using in vivo deuterium labelling. Increased expression of late-stage differentiation markers by CD8+ T-cells of CMV+ versus CMV- individuals was not solely explained by the presence of large, immunodominant CMV-specific CD8+ T-cell populations. The lifespans of circulating CMV-specific CD8+ T-cells did not differ significantly from those of bulk memory CD8+ T-cells, and the lifespans of bulk memory CD8+ T-cells did not differ significantly between CMV- and CMV+ individuals. Memory CD4+ T-cells of CMV+ individuals showed increased expression of late-stage differentiation markers and decreased Ki-67 expression. Overall, the expression of senescence markers on T-cell populations correlated positively with their expected in vivo lifespan. Together, this work suggests that i) large, immunodominant CMV-specific CD8+ T-cell populations do not explain the phenotypical differences between CMV+ and CMV- individuals, ii) CMV infection hardly affects the dynamics of the T-cell pool, and iii) large numbers of CMV-specific CD8+ T-cells are not due to longer lifespans of these cells.  相似文献   

13.
GBV-C infection is associated with prolonged survival and with reduced T cell activation in HIV-infected subjects not receiving combination antiretroviral therapy (cART). The relationship between GBV-C and T cell activation in HIV-infected subjects was examined. HIV-infected subjects on cART with non-detectable HIV viral load (VL) or cART naïve subjects were studied. GBV-C VL and HIV VL were determined. Cell surface markers of activation (CD38+/HLA-DR+), proliferation (Ki-67+), and HIV entry co-receptor expression (CCR5+ and CXCR4+) on total CD4+ and CD8+ T cells, and on naïve, central memory (CM), effector memory (EM), and effector CD4+ and CD8+ subpopulations were measured by flow cytometry. In subjects with suppressed HIV VL, GBV-C was consistently associated with reduced activation in naïve, CM, EM, and effector CD4+ cells. GBV-C was associated with reduced CD4+ and CD8+ T cell surface expression of activation and proliferation markers, independent of HIV VL classification. GBV-C was also associated with higher proportions of naïve CD4+ and CD8+ T cells, and with lower proportions of EM CD4+ and CD8+ T cells. In conclusion, GBV-C infection was associated with reduced activation of CD4+ and CD8+ T cells in both HIV viremic and HIV RNA suppressed patients. Those with GBV-C infection demonstrated an increased proportion of naive T cells and a reduction in T cell activation and proliferation independent of HIV VL classification, including those with suppressed HIV VL on cART. Since HIV pathogenesis is thought to be accelerated by T cell activation, these results may contribute to prolonged survival among HIV infected individuals co-infected with GBV-C. Furthermore, since cART therapy does not reduce T cell activation to levels seen in HIV-uninfected people, GBV-C infection may be beneficial for HIV-related diseases in those effectively treated with anti-HIV therapy.  相似文献   

14.
Human immunodeficiency virus (HIV)-infected infants in sub-Saharan Africa typically progress to AIDS or death by 2 years of life in the absence of antiretroviral therapy. This rapid progression to HIV disease has been related to immaturity of the adaptive immune response in infants. We screened 740 infants born to HIV-infected mothers and tracked development and specificity of HIV-specific CD8+ T-cell responses in 63 HIV-infected infants identified using gamma interferon enzyme-linked immunospot assays and intracellular cytokine staining. Forty-four in utero-infected and 19 intrapartum-infected infants were compared to 45 chronically infected children >2 years of age. Seventy percent (14 of 20) in utero-infected infants tested within the first week of life demonstrated HIV-specific CD8+ T-cell responses. Gag, Pol, and Nef were the principally targeted regions in chronic pediatric infection. However, Env dominated the overall response in one-third (12/36) of the acutely infected infants, compared to only 2/45 (4%) of chronically infected children (P = 0.00083). Gag-specific CD4+ T-cell responses were minimal to undetectable in the first 6 months of pediatric infection. These data indicate that failure to control HIV replication in in utero-infected infants is not due to an inability to induce responses but instead suggest secondary failure of adaptive immunity in containing this infection. Moreover, the detection of virus-specific CD8+ T-cell responses in the first days of life in most in utero-infected infants is encouraging for HIV vaccine interventions in infants.  相似文献   

15.
The important role of the CD8+ T-cells on HIV control is well established. However, correlates of immune protection remain elusive. Although the importance of CD8+ T-cell specificity and functionality in virus control has been underscored, further unraveling the link between CD8+ T-cell differentiation and viral control is needed. Here, an immunophenotypic analysis (in terms of memory markers and Programmed cell death 1 (PD-1) expression) of the CD8+ T-cell subset found in primary HIV infection (PHI) was performed. The aim was to seek for associations with functional properties of the CD8+ T-cell subsets, viral control and subsequent disease progression. Also, results were compared with samples from Chronics and Elite Controllers. It was found that normal maturation of total and HIV-specific CD8+ T-cells into memory subsets is skewed in PHI, but not at the dramatic level observed in Chronics. Within the HIV-specific compartment, this alteration was evidenced by an accumulation of effector memory CD8+ T (TEM) cells over fully differentiated terminal effector CD8+ T (TTE) cells. Furthermore, higher proportions of total and HIV-specific CD8+ TEM cells and higher HIV-specific TEM/(TEM+TTE) ratio correlated with markers of faster progression. Analysis of PD-1 expression on total and HIV-specific CD8+ T-cells from PHI subjects revealed not only an association with disease progression but also with skewed memory CD8+ T-cell differentiation. Most notably, significant direct correlations were obtained between the functional capacity of CD8+ T-cells to inhibit viral replication in vitro with higher proportions of fully-differentiated HIV-specific CD8+ TTE cells, both at baseline and at 12 months post-infection. Thus, a relationship between preservation of CD8+ T-cell differentiation pathway and cell functionality was established. This report presents evidence concerning the link among CD8+ T-cell function, phenotype and virus control, hence supporting the instauration of early interventions to prevent irreversible immune damage.  相似文献   

16.
Abstract: Immunophenotype analysis was used to characterize circulating lymphocyte subset levels in both rhesus monkeys that were chronically infected with SIVmac239 and in those that had resisted SIVmac239 infection as a result of prior vaccination with an attenuated SIV strain. Alterations in T, NK, and B cell subsets were compared with those previously identified in humans chronically infected with HIV [8–11, 14, 22]. The well-known decrease in CD4+ cell levels was observed in the SIVmac239-infected animals. However, these animals had relatively little activation of circulating CD8+ T cells as compared with uninfected monkeys. This contrasts with chronically HIV-infected humans who have substantial activation of circulating CD8+ cells as evidenced by elevated HLA-DR and CD38 antigen expression on CD8+ cells as well as substantially increased percentages and numbers of total CD8+ cells. NK cells of the SIVmac239-infected animals, on the other hand, demonstrated the same changes recently described in HIV-infected humans, i.e., a decrease in circulating percentages and a decreased amount of FcRIII (CD 16). B cell percentages were markedly increased in the SIVmac239-infected animals, a finding also noted in some children with HIV infection but not in HIV-infected adults. SIVΔnef-vaccinated/SIVmac239-challenged animals showed none of the immune alterations found in the SIVmac239-infected monkeys, providing further confirmation of lack of SIV disease in these vaccinated animals.  相似文献   

17.
Whether initiation of antiretroviral therapy (ART) regimens aimed at achieving greater concentrations within gut associated lymphoid tissue (GALT) impacts the level of mucosal immune reconstitution, inflammatory markers and the viral reservoir remains unknown. We included 12 HIV- controls and 32 ART-naïve HIV patients who were randomized to efavirenz, maraviroc or maraviroc+raltegravir, each with fixed-dose tenofovir disoproxil fumarate/emtricitabine. Rectal and duodenal biopsies were obtained at baseline and at 9 months of ART. We performed a comprehensive assay of T-cell subsets by flow cytometry, T-cell density in intestinal biopsies, plasma and tissue concentrations of antiretroviral drugs by high-performance liquid chromatography/mass spectroscopy, and plasma interleukin-6 (IL-6), lipoteichoic acid (LTA), soluble CD14 (sCD14) and zonulin-1 each measured by ELISA. Total cell-associated HIV DNA was measured in PBMC and rectal and duodenal mononuclear cells. Twenty-six HIV-infected patients completed the follow-up. In the duodenum, the quadruple regimen resulted in greater CD8+ T-cell density decline, greater normalization of mucosal CCR5+CD4+ T-cells and increase of the naïve/memory CD8+ T-cell ratio, and a greater decline of sCD14 levels and duodenal HIV DNA levels (P = 0.004 and P = 0.067, respectively), with no changes in HIV RNA in plasma or tissue. Maraviroc showed the highest drug distribution to the gut tissue, and duodenal concentrations correlated well with other T-cell markers in duodenum, i.e., the CD4/CD8 ratio, %CD4+ and %CD8+ HLA-DR+CD38+ T-cells. Maraviroc use elicited greater activation of the mucosal naïve CD8+ T-cell subset, ameliorated the distribution of the CD8+ T-cell maturational subsets and induced higher improvement of zonulin-1 levels. These data suggest that combined CCR5 and integrase inhibitor based combination therapy in ART treatment naïve patients might more effectively reconstitute duodenal immunity, decrease inflammatory markers and impact on HIV persistence by cell-dependent mechanisms, and show unique effects of MVC in duodenal immunity driven by higher drug tissue penetration and possibly by class-dependent effects.  相似文献   

18.
T cells are functionally compromised during HIV infection despite their increased activation and proliferation. Although T cell hyperactivation is one of the best predictive markers for disease progression, its causes are poorly understood. Anti-tat natural immunity as well as anti-tat antibodies induced by Tat immunization protect from progression to AIDS and reverse signs of immune activation in HIV-infected patients suggesting a role of Tat in T cell dysfunctionality. The Tat protein of HIV-1 is known to induce, in vitro, the activation of CD4+ T lymphocytes, but its role on CD8+ T cells and how these effects modulate, in vivo, the immune response to pathogens are not known. To characterize the role of Tat in T cell hyperactivation and dysfunction, we examined the effect of Tat on CD8+ T cell responses and antiviral immunity in different ex vivo and in vivo models of antigenic stimulation, including HSV infection. We demonstrate for the first time that the presence of Tat during priming of CD8+ T cells favors the activation of antigen-specific CTLs. Effector CD8+ T cells generated in the presence of Tat undergo an enhanced and prolonged expansion that turns to a partial dysfunctionality at the peak of the response, and worsens HSV acute infection. Moreover, Tat favors the development of effector memory CD8+ T cells and a transient loss of B cells, two hallmarks of the chronic immune activation observed in HIV-infected patients. Our data provide evidence that Tat affects CD8+ T cell responses to co-pathogens and suggest that Tat may contribute to the CD8+ T cell hyperactivation observed in HIV-infected individuals.  相似文献   

19.
Virus-specific CD8+ T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206–216 and Gag241–249 epitope-specific CD8+ T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8+ T-cell responses induced in all the 90-120-Ia+ macaques on SIV replication remains unknown. Here, we identified three CD8+ T-cell epitopes, Nef9–19, Nef89–97, and Nef193–203, associated with 90-120-Ia. Nef9–19 and Nef193–203 epitope-specific CD8+ T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8+ T cells, indicating that these CD8+ T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.  相似文献   

20.
During HIV infection, IL-10/IL-10 receptor and programmed death-1 (PD-1)/programmed death-1-ligand (PD-L1) interactions have been implicated in the impairment of cytotoxic T lymphocyte (CTL) activity. Despite antiretroviral therapy (ART), attenuated anti-HIV CTL functions present a major hurdle towards curative measures requiring viral eradication. Therefore, deeper understanding of the mechanisms underlying impaired CTL is crucial before HIV viral eradication is viable. The generation of robust CTL activity necessitates interactions between antigen-presenting cells (APC), CD4+ and CD8+ T cells. We have shown that in vitro, IL-10hiPD-L1hi regulatory B cells (Bregs) directly attenuate HIV-specific CD8+-mediated CTL activity. Bregs also modulate APC and CD4+ T cell function; herein we characterize the Breg compartment in uninfected (HIVNEG), HIV-infected “elite controllers” (HIVEC), ART-treated (HIVART), and viremic (HIVvir), subjects, and in vitro, assess the impact of Bregs on anti-HIV CTL generation and activity after reactivation of HIV latent reservoirs using suberoylanilide hydroxamic acid (SAHA). We find that Bregs from HIVEC and HIVART subjects exhibit comparable IL-10 expression levels significantly higher than HIVNEG subjects, but significantly lower than HIVVIR subjects. Bregs from HIVEC and HIVART subjects exhibit comparable PD-L1 expression, significantly higher than in HIVVIR and HIVNEG subjects. SAHA-treated Breg-depleted PBMC from HIVEC and HIVART subjects, displayed enhanced CD4+ T-cell proliferation, significant upregulation of antigen-presentation molecules, increased frequency of CD107a+ and HIV-specific CD8+ T cells, associated with efficient elimination of infected CD4+ T cells, and reduction in integrated viral DNA. Finally, IL-10-R and PD-1 antibody blockade partially reversed Breg-mediated inhibition of CD4+ T-cell proliferation. Our data suggest that, possibly, via an IL-10 and PD-L1 synergistic mechanism; Bregs likely inhibit APC function and CD4+ T-cell proliferation, leading to anti-HIV CTL attenuation, hindering viral eradication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号