首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect metamorphosis is triggered by the production, secretion and degradation of 20-hydroxyecdysone (ecdysone). In addition to its role in developmental regulation, increasing evidence suggests that ecdysone is involved in innate immunity processes, such as phagocytosis and the induction of antimicrobial peptide (AMP) production. AMP regulation includes systemic responses as well as local responses at surface epithelia that contact with the external environment. At pupariation, Drosophila melanogaster increases dramatically the expression of three AMP genes, drosomycin (drs), drosomycin-like 2 (drsl2) and drosomycin-like 5 (drsl5). We show that the systemic action of drs at pupariation is dependent on ecdysone signalling in the fat body and operates via the ecdysone downstream target, Broad. In parallel, ecdysone also regulates local responses, specifically through the activation of drsl2 expression in the gut. Finally, we confirm the relevance of this ecdysone dependent AMP expression for the control of bacterial load by showing that flies lacking drs expression in the fat body have higher bacterial persistence over metamorphosis. In contrast, local responses may be redundant with the systemic effect of drs since reduction of ecdysone signalling or of drsl2 expression has no measurable negative effect on bacterial load control in the pupa. Together, our data emphasize the importance of the association between ecdysone signalling and immunity using in vivo studies and establish a new role for ecdysone at pupariation, which impacts developmental success by regulating the immune system in a stage-dependent manner. We speculate that this co-option of immune effectors by the hormonal system may constitute an anticipatory mechanism to control bacterial numbers in the pupa, at the core of metamorphosis evolution.  相似文献   

2.
3.
Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity.  相似文献   

4.
The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone, and mammalian Ecd homologs have been implicated in cell cycle regulation and cancer. Why the Drosophila ecd1 mutants lack ecdysone has not been resolved. Here, we show that in Drosophila cells, Ecd directly interacts with core components of the U5 snRNP spliceosomal complex, including the conserved Prp8 protein. In accord with a function in pre-mRNA splicing, Ecd and Prp8 are cell-autonomously required for survival of proliferating cells within the larval imaginal discs. In the steroidogenic prothoracic gland, loss of Ecd or Prp8 prevents splicing of a large intron from CYP307A2/spookier (spok) pre-mRNA, thus eliminating this essential ecdysone-biosynthetic enzyme and blocking the entry to metamorphosis. Human Ecd (hEcd) can substitute for its missing fly ortholog. When expressed in the Ecd-deficient prothoracic gland, hEcd re-establishes spok pre-mRNA splicing and protein expression, restoring ecdysone synthesis and normal development. Our work identifies Ecd as a novel pre-mRNA splicing factor whose function has been conserved in its human counterpart. Whether the role of mammalian Ecd in cancer involves pre-mRNA splicing remains to be discovered.  相似文献   

5.
20E-hydroxyecdysone (20E) plays important roles in larval molting and metamorphosis in insects and is also involved in the insect innate immune response. Insect metamorphosis is a highly successful strategy for environmental adaptation and is the most vulnerable stage during which the insect is susceptible to various pathogens. 20E regulates a series of antimicrobial peptides (AMPs) through the immunodeficiency (IMD) pathway activation in Drosophila; nevertheless, whether other immune pathways are involved in 20E-regulated insect immunity is unknown. Our previous studies showed that BmMD-2A is a member of the MD-2-related lipid recognition (ML) family of proteins that are involved in the Bombyx mori innate immunity Toll signaling pathway. In this study, we further demonstrate that BmMD-2A is also positively regulated by 20E, and the BmMD-2A neutralization experiment suggested that 20E activates some downstream immune effect factors, the AMP genes against Escherichia coli and Staphylococcus aureus, through the regulation of BmMD-2A in larval metamorphosis, implying that B. mori may use the Toll-ML signaling pathway to maintain innate immune balance in the larval-pupal metamorphosis stage, which is a different innate immunity pathway regulated by 20E compared to the IMD pathway in Drosophila.  相似文献   

6.
Ecdysteroid is a crucial steroid hormone in insects, especially during metamorphosis. Here, we show that the Drosophila membrane steroid binding protein (Dm_MSBP) is a novel structural homolog of the vertebrate membrane-bound receptor component for progesterone. Dm_MSBP exhibited binding affinity to ecdysone when expressed on the cell surface of Drosophila S2 cells. In S2 cells, the stable overexpression of Dm_MSBP suppressed the growth arrest triggered by 20-hydroxyecdysone and prevented the temporal activation of extracellular signal-regulated kinase proteins. These results suggest that Dm_MSBP is a membranous suppressor to ecdysteroid and blocks the signaling by binding it in extracellular fluid.  相似文献   

7.
Drosophila is an extremely useful model organism for understanding how innate immune mechanisms defend against microbes and parasitoids. Large foreign objects trigger a potent cellular immune response in Drosophila larva. In the case of endoparasitoid wasp eggs, this response includes hemocyte proliferation, lamellocyte differentiation and eventual encapsulation of the egg. The encapsulation reaction involves the attachment and spreading of hemocytes around the egg, which requires cytoskeletal rearrangements, changes in adhesion properties and cell shape, as well as melanization of the capsule. Guanine nucleotide metabolism has an essential role in the regulation of pathways necessary for this encapsulation response. Here, we show that the Drosophila inosine 5''-monophosphate dehydrogenase (IMPDH), encoded by raspberry (ras), is centrally important for a proper cellular immune response against eggs from the parasitoid wasp Leptopilina boulardi. Notably, hemocyte attachment to the egg and subsequent melanization of the capsule are deficient in hypomorphic ras mutant larvae, which results in a compromised cellular immune response and increased survival of the parasitoid.  相似文献   

8.
The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-α3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival.  相似文献   

9.
10.
昆虫细胞免疫反应中的吞噬、集结和包囊作用   总被引:2,自引:0,他引:2  
吴姗  凌尔军 《昆虫学报》2009,52(7):791-798
细胞免疫是昆虫天生免疫系统中很重要的部分, 包括了由血细胞介导的一系列吞噬、 集结和包囊等作用。本文讨论了近年来在昆虫细胞免疫方面的研究进展, 包括参与昆虫细胞免疫的血细胞类型, 识别外来异物的受体因子, 影响免疫活性的一些酶和化学物质等。另外还就吞噬模式, 以及集结和包囊过程中粘附态细胞的形成等加以讨论。  相似文献   

11.
天然免疫系统是多细胞生物抵抗各种入侵微生物的第一道防线.Notch途径介导相邻细胞之间的相互作用,调节细胞、组织、器官的分化和发育.为了进一步探索Notch信号途径在果蝇天然免疫中的功能,利用Notch途径下游基因Su(H)和E(spl)的低表达突变体果蝇,通过体外注射病原体分析了生存率、血细胞的噬菌功能和抗菌肽的表达量以及突变体的血细胞数量.结果表明,革兰氏阴性细菌和真菌感染后果蝇E(spl)突变体的生存率、噬菌能力及抗菌肽的表达量明显降低,而且幼虫期血细胞出现异常增殖;Su(H)突变体只对真菌表现出敏感性,抗菌肽的表达量降低,但是对真菌的噬菌能力正常.此结果表明,Notch途径不仅影响个体的生长发育,而且在果蝇天然免疫中也起重要的调节作用.  相似文献   

12.
13.
The steroid hormone ecdysone regulates the major post-embryonictransitions during the Drosophila life cycle, including theonset of, and progression through, metamorphosis. Reviewed hereare several recent studies that together give insight into boththe transduction of the ecdysone signal itself as well as otherpossible hormonal signaling events associated with metamorphosis.Genetic studies of the two components of the ecdysone receptor,EcR and usp, demonstrate that they are essential for the initiationof metamorphosis in Drosophila. These genes are not, however,required for some earlier events that prepare the animal formetamorphosis. Instead, the orphan nuclear receptor DHR78 appearsto regulate these events, possibly in response to an as yetunidentified hormone. An additional role for usp, independentfrom EcR function, has also been uncovered in epidermis andcuticle development, suggesting a possible role for usp in integratingecdysone and juvenile hormone signals.  相似文献   

14.
15.
Innate immunity is based on the recognition of cell-surface molecules of infecting agents. Microbial substances, such as peptidoglycan, lipopolysaccharide, and beta-1,3-glucans, produce functional responses in Drosophila hemocytes that contribute to innate immunity. We have used two-dimensional gel electrophoresis and MS to resolve lipopolysaccharide-induced changes in the protein profile of a Drosophila hemocytic cell line. We identified 24 intracellular proteins that were up- or down-regulated, or modified, in response to immune challenge. Several proteins with predicted immune functions, including lysosomal proteases, actin-binding/remodeling proteins, as well as proteins involved in cellular responses to oxidative stress, were affected by the immune assault. Intriguingly, a number of the proteins identified in this study have recently been implicated in phagocytosis in higher vertebrates. We suggest that phagocytosis is activated in Drosophila hemocytes by the presence of microbial substances, and that this activation constitutes an evolutionarily conserved arm of innate immunity. In addition, a number of proteins involved in calcium-regulated signaling, mRNA processing, and nuclear transport were affected, consistent with a possible role in reprogramming of gene expression. In conclusion, the present proteome analysis identified many proteins previously not linked to innate immunity, demonstrating that differential protein profiling of Drosophila hemocytes is a valuable tool for identification of new players in immune-related cellular processes.  相似文献   

16.
Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect''s open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and β-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems.  相似文献   

17.
Cricket Paralysis virus (CrPV) is a member of the Dicistroviridae family of RNA viruses, which infect a broad range of insect hosts, including the fruit fly Drosophila melanogaster. Drosophila has emerged as an effective system for studying innate immunity because of its powerful genetic techniques and the high degree of gene and pathway conservation. Intra-abdominal injection of CrPV into adult flies causes a lethal infection that provides a robust assay for the identification of mutants with altered sensitivity to viral infection. To gain insight into the interactions between viruses and the innate immune system, we injected wild type flies with CrPV and observed that antimicrobial peptides (AMPs) were not induced and hemocytes were depleted in the course of infection. To investigate the contribution of conserved immune signaling pathways to antiviral innate immune responses, CrPV was injected into isogenic mutants of the Immune Deficiency (Imd) pathway, which resembles the mammalian Tumor Necrosis Factor Receptor (TNFR) pathway. Loss-of-function mutations in several Imd pathway genes displayed increased sensitivity to CrPV infection and higher CrPV loads. Our data show that antiviral innate immune responses in flies infected with CrPV depend upon hemocytes and signaling through the Imd pathway.  相似文献   

18.
The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号