首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA barcoding can be an effective tool for fast and accurate species-level identification based on sequencing of the mitochondrial cytochrome c oxidase subunit (COI) gene. The diversity of this fragment can be used to estimate the richness of the respective species. In this study, we explored the use of DNA barcoding in a group of ornamental freshwater fish of the genus Hyphessobrycon. We sequenced the COI from 10 species of Hyphessobrycon belonging to the “Rosy Tetra Clade” collected from the Amazon and Negro River basins and combined our results with published data. The average conspecific and congeneric Kimura 2-parameter distances were 2.3% and 19.3%, respectively. Six of the 10 species were easily distinguishable by DNA barcoding (H. bentosi, H. copelandi, H. eques, H. epicharis, H. pulchrippinis, and H. sweglesi), whereas the remaining species (H. erythrostigma, H. pyrrhonotus, H. rosaceus and H. socolofi) lacked reciprocal monophyly. Although the COI gene was not fully diagnostic, the discovery of distinct evolutionary units in certain Hyphessobrycon species under the same specific epithet as well as haplotype sharing between different species suggest that DNA barcoding is useful for species identification in this speciose genus.  相似文献   

2.
《Journal of Asia》2020,23(2):540-545
With about 5000 known species, the Vespidae is a large family belongs to order Hymenoptera. The genus Vespa with 22 species is one of the four genera of the subfamily Vespinae. In Korea, 10 species and subspecies are recognized. Because of their social behavior, their treat to human health and their impact in apiculture, the reliable and sometimes automated identification of these insects to species level are important. To test the efficacy of DNA barcoding method for identification of species of the genus Vespa in Korea, 30 samples of eight Korean species of genus Vespa were collected and mitochondrial DNAs of 658 bp fragment cytochrome oxidase subunit 1 (CO1) region were sequenced. A Bayesian Inference based on COI gene of the Korean Vespa species was constructed. The phylogenetic tree shoed that identification of all specimens is possible based on COI gene and we found strong relation between the sequences of the collected species from different localities in South Korea which clustered together with 100% support with sequences of the same species in GenBank. The results demonstrate that DNA barcoding is a useful technique for rapid and accurate species recognition in Korean Vespa species. The DNA barcode part of COI for V. binghami is provided for the first time that can help for identification of this species through DNA barcoding. Also, the genetic diversity among Korean Vespa velutina was zero suggests that the invasion might have occurred in a single event with small number of founders.  相似文献   

3.
4.
Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia.  相似文献   

5.
Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis.  相似文献   

6.
Zou S  Li Q  Kong L  Yu H  Zheng X 《PloS one》2011,6(10):e26619

Background

DNA barcoding has recently been proposed as a promising tool for the rapid species identification in a wide range of animal taxa. Two broad methods (distance and monophyly-based methods) have been used. One method is based on degree of DNA sequence variation within and between species while another method requires the recovery of species as discrete clades (monophyly) on a phylogenetic tree. Nevertheless, some issues complicate the use of both methods. A recently applied new technique, the character-based DNA barcode method, however, characterizes species through a unique combination of diagnostic characters.

Methodology/Principal Findings

Here we analyzed 108 COI and 102 16S rDNA sequences of 40 species of Neogastropoda from a wide phylogenetic range to assess the performance of distance, monophyly and character-based methods of DNA barcoding. The distance-based method for both COI and 16S rDNA genes performed poorly in terms of species identification. Obvious overlap between intraspecific and interspecific divergences for both genes was found. The “10× rule” threshold resulted in lumping about half of distinct species for both genes. The neighbour-joining phylogenetic tree of COI could distinguish all species studied. However, the 16S rDNA tree could not distinguish some closely related species. In contrast, the character-based barcode method for both genes successfully identified 100% of the neogastropod species included, and performed well in discriminating neogastropod genera.

Conclusions/Significance

This present study demonstrates the effectiveness of the character-based barcoding method for species identification in different taxonomic levels, especially for discriminating the closely related species. While distance and monophyly-based methods commonly use COI as the ideal gene for barcoding, the character-based approach can perform well for species identification using relatively conserved gene markers (e.g., 16S rDNA in this study). Nevertheless, distance and monophyly-based methods, especially the monophyly-based method, can still be used to flag species.  相似文献   

7.
Clare EL  Lim BK  Fenton MB  Hebert PD 《PloS one》2011,6(7):e22648
DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI) is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera). This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0-11.79%) with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats.  相似文献   

8.
【目的】离腹寡毛实蝇属Bactrocera昆虫是最具经济重要性的实蝇类害虫,本研究依据mtDNA COI基因碱基序列对离腹寡毛实蝇属常见实蝇种类进行识别鉴定与系统发育分析。【方法】以口岸经常截获的离腹寡毛实蝇属8个亚属21种实蝇为对象,采用DNA条形码技术,通过对mtDNA COI基因片段 (约650 bp)的测序和比对,以MEGA软件的K2-P双参数模型计算种内及种间遗传距离,以邻接法(NJ) 构建系统发育树。【结果】聚类分析与形态学鉴定结果一致,除11种单一序列实蝇外,其他10种实蝇均各自形成一个单系,节点支持率为99%以上。种内(10种)遗传距离为0.0003~0.0068,平均为0.0043;种间(21种)遗传距离为0.0154~0.2395,平均为0.1540;种间遗传距离为种内遗传距离的35.8倍,而且种内、种间遗传距离没有重叠区域。【结论】基于mtDNA COI基因的DNA条形码技术可以用于离腹寡毛实蝇属昆虫的快速鉴定识别,该技术体系的建立对实蝇类害虫的检测监测具有重要意义。  相似文献   

9.
为弥补传统形态分类方法的不足,探究应用DNA条形码技术进行分子生物学鉴定的可行性,本研究用DNA条形码技术检测了青海省海东地区3目6科14属18种110只小型兽类的COI基因部分序列。分析所测COI基因序列可知:种内遗传距离≤3%,种间遗传距离5-10%,属间遗传距离12-19%,种间遗传距离显著大于种内遗传距离。NJ树显示同种个体聚为有很高支持度的单一分支。有6个个体(4只黄胸鼠、2只小家鼠)在现场鉴定中被误定为其他种类。研究结果表明使用条形码技术能纠正形态学鉴定中的错误,也说明动物线粒体COI基因是一个有效的DNA条形码标准基因。  相似文献   

10.

Background

The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous.

Results

We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae.

Conclusion

Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.  相似文献   

11.
DNA barcoding is an effective technique to identify species and analyze phylogenesis and evolution. However, research on and application of DNA barcoding in Canis have not been carried out. In this study, we analyzed two species of Canis, Canis lupus (n = 115) and Canis latrans (n = 4), using the cytochrome c oxidase subunit I (COI) gene (1545 bp) and COI barcoding (648 bp DNA sequence of the COI gene). The results showed that the COI gene, as the moderate variant sequence, applied to the analysis of the phylogenesis of Canis members, and COI barcoding applied to species identification of Canis members. Phylogenetic trees and networks showed that domestic dogs had four maternal origins (A to D) and that the Tibetan Mastiff originated from Clade A; this result supports the theory of an East Asian origin of domestic dogs. Clustering analysis and networking revealed the presence of a closer relative between the Tibetan Mastiff and the Old English sheepdog, Newfoundland, Rottweiler and Saint Bernard, which confirms that many well-known large breed dogs in the world, such as the Old English sheepdog, may have the same blood lineage as that of the Tibetan Mastiff.  相似文献   

12.
BACKGROUND: Identifying species of organisms by short sequences of DNA has been in the center of ongoing discussions under the terms DNA barcoding or DNA taxonomy. A C-terminal fragment of the mitochondrial gene for cytochrome oxidase subunit I (COI) has been proposed as universal marker for this purpose among animals. RESULTS: Herein we present experimental evidence that the mitochondrial 16S rRNA gene fulfills the requirements for a universal DNA barcoding marker in amphibians. In terms of universality of priming sites and identification of major vertebrate clades the studied 16S fragment is superior to COI. Amplification success was 100% for 16S in a subset of fresh and well-preserved samples of Madagascan frogs, while various combination of COI primers had lower success rates.COI priming sites showed high variability among amphibians both at the level of groups and closely related species, whereas 16S priming sites were highly conserved among vertebrates. Interspecific pairwise 16S divergences in a test group of Madagascan frogs were at a level suitable for assignment of larval stages to species (1-17%), with low degrees of pairwise haplotype divergence within populations (0-1%). CONCLUSION: We strongly advocate the use of 16S rRNA as standard DNA barcoding marker for vertebrates to complement COI, especially if samples a priori could belong to various phylogenetically distant taxa and false negatives would constitute a major problem.  相似文献   

13.
DNA barcoding as a method for species identification is rapidly increasing in popularity. However, there are still relatively few rigorous methodological tests of DNA barcoding. Current distance-based methods are frequently criticized for treating the nearest neighbor as the closest relative via a raw similarity score, lacking an objective set of criteria to delineate taxa, or for being incongruent with classical character-based taxonomy. Here, we propose an artificial intelligence-based approach - inferring species membership via DNA barcoding with back-propagation neural networks (named BP-based species identification) - as a new advance to the spectrum of available methods. We demonstrate the value of this approach with simulated data sets representing different levels of sequence variation under coalescent simulations with various evolutionary models, as well as with two empirical data sets of COI sequences from East Asian ground beetles (Carabidae) and Costa Rican skipper butterflies. With a 630-to 690-bp fragment of the COI gene, we identified 97.50% of 80 unknown sequences of ground beetles, 95.63%, 96.10%, and 100% of 275, 205, and 9 unknown sequences of the neotropical skipper butterfly to their correct species, respectively. Our simulation studies indicate that the success rates of species identification depend on the divergence of sequences, the length of sequences, and the number of reference sequences. Particularly in cases involving incomplete lineage sorting, this new BP-based method appears to be superior to commonly used methods for DNA-based species identification.  相似文献   

14.
Parasitoid wasps have received a great deal of attention in the biological control of melon-cotton aphid (Aphis gossypii Glover). The species of parasitoids are often difficult to identify because of their small body size and profound diversity. DNA barcoding offers scientists who are not expert taxonomists a powerful tool to render their field studies more accurate. Using DNA barcodes to identify aphid parasitoid wasps in specific cropping systems may provide valuable information for biological control. Here, we report the use of DNA barcoding to confirm the morphological identification of 14 species (belonging to 13 genera of 7 families) of parasitoid wasps from two-year field samples in a watermelon cropping system. We generated DNA sequences from the mitochondrial COI gene and the nuclear D2 region of 28S rDNA to assess the genetic variation within and between parasitoid species. Automatic Barcode Gap Discovery (ABGD) supported the presence of 14 genetically distinct groups in the dataset. Among the COI sequences, we found no overlap between the maximum K2P distance within species (0.49%) and minimum distance between species (6.85%). The 28S sequences also showed greater interspecific distance than intraspecific distance. DNA barcoding confirmed the morphological identification. However, inconsistency and ambiguity of taxonomic information available in the online databases has limited the successful use of DNA barcoding. Only five species matched those in the BOLD and GenBank. Four species did not match the entries in GenBank and five species showed ambiguous results in BOLD due to confusing nomenclature. We suggested that species identification based on DNA barcodes should be performed using both COI and other genes. Nonetheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to provide a foundation for studies aimed at improving the understanding of the biocontrol services provided by parasitoids in the melon ecosystem.  相似文献   

15.
16.
DNA barcoding methodologies are being increasingly applied not only for scientific purposes but also for diverse real-life uses. Fisheries assessment is a potential niche for DNA barcoding, which serves for species authentication and may also be used for estimating within-population genetic diversity of exploited fish. Analysis of single-sequence barcodes has been proposed as a shortcut for measuring diversity in addition to the original purpose of species identification. Here we explore the relative utility of different mitochondrial sequences (12S rDNA, COI, cyt b, and D-Loop) for application as barcodes in fisheries sciences, using as case studies two marine and two freshwater catches of contrasting diversity levels. Ambiguous catch identification from COI and cyt b was observed. In some cases this could be attributed to duplicated names in databases, but in others it could be due to mitochondrial introgression between closely related species that may obscure species assignation from mtDNA. This last problem could be solved using a combination of mitochondrial and nuclear genes. We suggest to simultaneously analyze one conserved and one more polymorphic gene to identify species and assess diversity in fish catches.  相似文献   

17.
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.  相似文献   

18.
为提高物种鉴定的准确性, 本研究采用DNA条形码技术对大亚湾生态监控区冬季采集的贝类样品进行了种类鉴定。结果表明, 26个形态种中, 有15个可以通过线粒体COI和16S rRNA基因的系统发育分析鉴定到种的水平。部分形态上难以鉴定的种类, 如线缝摺塔螺(Ptychobela suturalis)和区系螺(Funa sp.)可以通过条形码实现有效鉴定。锯齿巴非蛤(Paphia gallus)、西格织纹螺(Nassarius siquijorensis)、爪哇拟塔螺(Turricula javana)等种类存在相当大的种内遗传距离, 有存在隐存种的可能性。尽管基于线粒体COI和16S rRNA基因的种内遗传距离和属内种间的遗传距离发生重合, 无明显的条形码间隙, 但通过系统树的方法仍能有效鉴定物种。可见, DNA条形码技术能有效提高海洋贝类物种鉴定的准确性并发现隐存种。  相似文献   

19.
The 5' region of the mitochondrial DNA (mtDNA) gene cytochrome c oxidase I (COI) is the standard marker for DNA barcoding. However, because COI tends to be highly variable in amphibians, sequencing is often challenging. Consequently, another mtDNA gene, 16S rRNA gene, is often advocated for amphibian barcoding. Herein, we directly compare the usefulness of COI and 16S in discriminating species of hynobiid salamanders using 130 individuals. Species identification and classification of these animals, which are endemic to Asia, are often based on morphology only. Analysis of Kimura 2-parameter genetic distances (K2P) documents the mean intraspecific variation for COI and 16S rRNA genes to be 1.4% and 0.3%, respectively. Whereas COI can always identify species, sometimes 16S cannot. Intra- and interspecific genetic divergences occasionally overlap in both markers, thus reducing the value of a barcoding gap to identify genera. Regardless, COI is the better DNA barcoding marker for hynobiids. In addition to the comparison of two potential markers, high levels of intraspecific divergence in COI (>5%) suggest that both Onychodactylus fischeri and Salamandrella keyserlingii might be composites of cryptic species.  相似文献   

20.
DNA条形码技术在植物中的研究现状   总被引:1,自引:0,他引:1  
闫化学  于杰 《植物学通报》2010,45(1):102-108
DNA条形码技术(DNA barcoding)是用短的DNA片段对物种进行识别和鉴定的分子生物学技术。在动物研究中该技术已经成功应用于利用线粒体细胞色素c氧化酶亚基I(COI)进行物种鉴定和发现隐种或新物种。相对于动物, COI基因在高等植物中进化速率较慢, 因此植物条形码研究以叶绿体基因组作为重点, 但目前还处于寻找合适的基因片段阶段。许多学者对此进行了积极的探索, 报道了多种植物条形码的候选片段或组合, 但还没有获得满足所有标准的特征位点片段。该文介绍了DNA条形码的标准、优点、工作流程及数据分析方法, 总结了DNA条形码在植物中的研究现状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号