首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C-terminus region of the 1863 residue early onset of breast cancer gene 1 (BRCA1) nuclear protein contains a tandem globular carboxy terminus domain termed BRCT. The BRCT repeats in BRCA1 are phosphoserine- and/or phosphothreonine-specific binding modules. The interaction of the BRCT(BRCA1) domains with phosphorylated BRCA1-associated carboxyl terminal helicase (BACH1) is cell cycle regulated and is essential for DNA damage-induced checkpoint control during the transition from the G(2) phase to the M phase of the cell cycle. Development of a competitive, homogeneous, high-throughput fluorescence polarization (FP) assay to identify small molecule inhibitors of BRCT(BRCA1)-BACH1 interaction is reported here. The FP assay was used for measuring binding affinities and inhibition constants of BACH1 peptides and small molecule inhibitors of BRCT(BRCA1) domains, respectively. A fluorescently labeled wild-type BACH1 decapeptide (BDP1) containing the critical phosphoserine, a phenylalanine at (P+3), and a GST-BRCT fusion protein were used to establish the FP assay. BDP1 has a dissociation constant (K(d)) of 1.58+/-0.01microM and a dynamic range (DeltamP) of 164.9+/-1.9. The assay tolerates 20% dimethyl sulfoxide, which enables screening poorly soluble compounds. Under optimized conditions, a Z' factor of 0.87 was achieved in a 384-well format for high-throughput screening.  相似文献   

2.
The c-Cbl protooncogene can function as a negative regulator of receptor protein tyrosine kinases (RPTKs) by targeting activated receptors for polyubiquitination and downregulation. This function requires its tyrosine kinase binding (TKB) domain for targeting RPTKs and RING finger domain to recruit E2 ubiquitin-conjugating enzymes. It has therefore been proposed that oncogenic Cbl proteins act in a dominant-negative manner to block this c-Cbl activity. In testing this hypothesis, we found that although mutations spanning the RING finger abolish c-Cbl-directed polyubiquitination and downregulation of RPTKs, they do not induce transformation. In contrast, it is mutations within a highly conserved alpha-helical structure linking the SH2 and RING finger domains that render Cbl proteins oncogenic. Thus, Cbl transformation involves effects additional to polyubiquitination of RPTKs that are independent of the RING finger and its ability to recruit E2-conjugating enzymes.  相似文献   

3.
To study the biology of regulators of G-protein signaling (RGS) proteins and to facilitate the identification of small molecule modulators of RGS proteins, the authors recently developed an advanced yeast 2-hybrid (YTH) assay format for GalphaZ and RGS-Z1. Moreover, they describe the development of a multiplexed luciferase-based assay that has been successfully adapted to screen large numbers of small molecule modulators of protein-protein interactions. They generated and evaluated 2 different luciferase reporter gene systems for YTH interactions, a Gal4 responsive firefly luciferase reporter gene and a Gal4 responsive Renilla luciferase reporter gene. Both the firefly and Renilla luciferase reporter genes demonstrated a 40- to 50-fold increase in luminescence in strains expressing interacting YTH fusion proteins versus negative control strains. Because the firefly and Renilla luciferase proteins have different substrate specificity, the assays were multiplexed. The multiplexed luciferase-based YTH platform adds speed, sensitivity, simplicity, quantification, and efficiency to YTH high-throughput applications and therefore greatly facilitates the identification of small molecule modulators of protein-protein interactions as tools or potential leads for drug discovery efforts.  相似文献   

4.
Cbl proteins have been implicated in the regulation of endocytic trafficking of epidermal growth factor receptor. However, the precise role of Cbl in epidermal growth factor receptor endocytosis is not defined. To directly visualize Cbl in cells and perform structure-function analysis of Cbl's role in epidermal growth factor receptor internalization, a yellow fluorescent protein-fusion of c-Cbl was constructed. Upon epidermal growth factor receptor activation, Cbl-yellow fluorescent protein moved with epidermal growth factor receptor to clathrin-coated pits and endosomes. Localization of Cbl-yellow fluorescent protein to these endocytic organelles was dependent on a proline-rich domain of c-Cbl that interacts with Grb2 as shown by fluorescence resonance energy transfer microscopy. In contrast, direct binding of Cbl to phosphotyrosine 1045 of the epidermal growth factor receptor was required for epidermal growth factor receptor polyubiquitination, but was not essential for Cbl-yellow fluorescent protein localization in epidermal growth factor receptor-containing compartments. These data suggest that the binding of Cbl to epidermal growth factor receptor through Grb2 is necessary and sufficient for Cbl function during clathrin-mediated endocytosis. Overexpression of c-Cbl mutants that are capable of Grb2 binding but defective in linker/RING finger domain function severely inhibited epidermal growth factor receptor internalization. The same dominant-negative mutants of Cbl did not block epidermal growth factor receptor recruitment into coated pits but retained receptors in coated pits, thus preventing receptor endocytosis and transport to endosomes. These data suggest that the linker and RING finger domain of Cbl may function during late steps of coated vesicle formation. We propose that the RING domain of Cbl facilitates endocytosis either by epidermal growth factor receptor monoubiquitylation or by ubiquitylation of proteins associated with the receptor.  相似文献   

5.
Cbl proteins (Cbl, Cbl-b and Cbl-c) are ubiquitin ligases that are critical regulators of tyrosine kinase signaling. In this study we identify a new Cbl-c interacting protein, Hydrogen peroxide Induced Construct 5 (Hic-5). The two proteins interact through a novel interaction mediated by the RING finger of Cbl-c and the LIM2 domain of Hic-5. Further, this interaction is mediated and dependent on specific zinc coordinating complexes within the RING finger and LIM domain. Binding of Hic-5 to Cbl-c leads to an increase in the ubiquitin ligase activity of Cbl-c once Cbl-c has been activated by Src phosphorylation or through an activating phosphomimetic mutation. In addition, co-transfection of Hic-5 with Cbl-c leads to an increase in Cbl-c mediated ubiquitination of the EGFR. These data suggest that Hic-5 enhances Cbl-c ubiquitin ligase activity once Cbl-c has been phosphorylated and activated. Interactions between heterologous RING fingers have been shown to activate E3s. This is the first demonstration of enhancement of ubiquitin ligase activity of a RING finger ubiquitin ligase by the direct interaction of a LIM zinc coordinating domain.  相似文献   

6.
The proto-oncogene product Cbl has emerged as a negative regulator of a number of protein-tyrosine kinases, including the ZAP-70/Syk tyrosine kinases that are critical for signaling in hematopoietic cells. The evolutionarily conserved N-terminal tyrosine kinase-binding domain is required for Cbl to associate with ZAP-70/Syk and for their subsequent negative regulation. However, the role of the remaining C-terminal regions of Cbl remains unclear. Here, we used a COS-7 cell reconstitution system to address this question. Analysis of a series of C-terminally truncated Cbl mutants revealed that the N-terminal half of the protein, including the TKB and RING finger domains, was sufficient to mediate negative regulation of Syk. Further truncations, which delete the RING finger domain, abrogated the negative regulatory effects of Cbl on Syk. Point mutations of conserved cysteine residues or a histidine in the RING finger domain, which are required for zinc binding, abrogated the ability of Cbl to negatively regulate Syk in COS-7 cells and Ramos B lymphocytic cells. In addition, Syk-dependent transactivation of a serum response element-luciferase reporter in transfected 293T cells was reduced by wild type Cbl; mutations of the RING finger domain or its deletion abrogated this effect. These results establish the RING finger domain as an essential element in Cbl-mediated negative regulation of a tyrosine kinase and reveal that the evolutionarily conserved N-terminal half of the protein is sufficient for this function.  相似文献   

7.
The c-Cbl proto-oncogene product Cbl has emerged as a negative regulator of receptor and non-receptor tyrosine kinases, a function dependent on its recently identified ubiquitin ligase activity. Here, we report that EphA2, a member of Eph receptor tyrosine kinases is negatively regulated by Cbl. The negative regulation of EphA2 mediated by Cbl is dependent on the activity of EphA2, as the kinase inactive mutant of EphA2 cannot be regulated by Cbl. Moreover, a point mutation (G306E-Cbl) in TKB region of Cbl that has been reported to abolish Cbl binding to RTKs and non-receptor tyrosine kinases impaired the binding to active EphA2. The dominant negative mutant 70Z-Cbl, which has a 17-amino acids deletion in the N-boundary of the RING finger domain, defuncted negative regulatory function of Cbl to EphA2. These results demonstrate that the TKB domain and RING finger domain of Cbl are essential for this negative regulation.  相似文献   

8.
Inhibitor of apoptosis (IAP) proteins are key negative regulators of cell death that are highly expressed in many cancers. Cell death caused by antagonists that bind to IAP proteins is associated with their ubiquitylation and degradation. The RING domain at the C terminus of IAP proteins is pivotal. Here we report the crystal structures of the cIAP2 RING domain homodimer alone, and bound to the ubiquitin-conjugating (E2) enzyme UbcH5b. These structures show that small changes in the RING domain accompany E2 binding. By mutating residues at the E2-binding surface, we show that autoubiquitylation is required for regulation of IAP abundance. Dimer formation is also critical, and mutation of a single C-terminal residue abrogated dimer formation and E3 ligase activity was diminished. We further demonstrate that disruption of E2 binding, or dimerization, stabilizes IAP proteins against IAP antagonists in vivo.  相似文献   

9.
Cbl proteins are ubiquitin ligases (E3s) that play a significant role in regulating tyrosine kinase signaling. There are three mammalian family members: Cbl, Cbl-b, and Cbl-c. All have a highly conserved N-terminal tyrosine kinase binding domain, a catalytic RING finger domain, and a C-terminal proline-rich domain that mediates interactions with Src homology 3 (SH3) containing proteins. Although both Cbl and Cbl-b have been studied widely, little is known about Cbl-c. Published reports have demonstrated that the N terminus of Cbl and Cbl-b have an inhibitory effect on their respective E3 activity. However, the mechanism for this inhibition is still unknown. In this study we demonstrate that the N terminus of Cbl-c, like that of Cbl and Cbl-b, inhibits the E3 activity of Cbl-c. Furthermore, we map the region responsible for the inhibition to the EF-hand and SH2 domains. Phosphorylation of a critical tyrosine (Tyr-341) in the linker region of Cbl-c by Src or a phosphomimetic mutation of this tyrosine (Y341E) is sufficient to increase the E3 activity of Cbl-c. We also demonstrate for the first time that phosphorylation of Tyr-341 or the Y341E mutation leads to a decrease in affinity for the ubiquitin-conjugating enzyme (E2), UbcH5b. The decreased affinity of the Y341E mutant Cbl-c for UbcH5b results in a more rapid turnover of bound UbcH5b coincident with the increased E3 activity. These data suggest that the N terminus of Cbl-c contributes to the binding to the E2 and that phosphorylation of Tyr-341 leads to a decrease in affinity and an increase in the E3 activity of Cbl-c.  相似文献   

10.
The casitas B-lineage lymphoma (Cbl) proteins play an important role in regulating signal transduction pathways by functioning as E3 ubiquitin ligases. The Cbl proteins contain a conserved tyrosine kinase binding (TKB) domain that binds more than a dozen proteins, including protein tyrosine kinases (PTKs), in a phosphorylation-dependent manner. The cell surface expression levels of the PTKs are regulated by Cbl-mediated ubiquitination, internalization, and degradation. Dysfunction in this signaling cascade has resulted in prolonged activation of the PTKs and, therefore, has been implicated in inflammatory diseases and various cancers. Due to this negative regulatory function, Cbl has been largely ignored as a therapeutic target. However, recent studies, such as the identification of (i) gain of function c-Cbl mutations in subsets of myeloid cancer and (ii) c-Cbl as a prostate basal cell marker that correlates with poor clinical outcome, suggest otherwise. Here we report the development of a competitive high-throughput fluorescence polarization assay in a 384-well format to identify inhibitors of Cbl(TKB). The high-throughput screen readiness of the assay was demonstrated by screening the Prestwick Chemical Library.  相似文献   

11.
Knockdown of growth factor receptor binding protein 2 (Grb2) by RNA interference strongly inhibits clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR). To gain insights into the function of Grb2 in EGFR endocytosis, we have generated cell lines in which endogenous Grb2 was replaced by yellow fluorescent protein (YFP)-tagged Grb2 expressed at the physiological level. In these cells, Grb2-YFP fully reversed the inhibitory effect of Grb2 knockdown on EGFR endocytosis and, moreover, trafficked together with EGFR during endocytosis. Overexpression of Grb2-binding protein c-Cbl did not restore endocytosis in Grb2-depleted cells. However, EGFR endocytosis was rescued in Grb2-depleted cells by chimeric proteins consisting of the Src homology (SH) 2 domain of Grb2 fused to c-Cbl. The "knockdown and rescue" analysis revealed that the expression of Cbl-Grb2/SH2 fusions containing RING finger domain of Cbl restores normal ubiquitylation and internalization of the EGFR in the absence of Grb2, consistent with the important role of the RING domain in EGFR endocytosis. In contrast, the carboxy-terminal domain of Cbl, when attached to Grb2 SH2 domain, had 4 times smaller endocytosis-rescue effect compared with the RING-containing chimeras. Together, the data suggest that the interaction of Cbl carboxy terminus with CIN85 has a minor and a redundant role in EGFR internalization. We concluded that Grb2-mediated recruitment of the functional RING domain of Cbl to the EGFR is essential and sufficient to support receptor endocytosis.  相似文献   

12.
Two major plasma proteins in humans are primarily responsible for drug binding, the α1-acid-glycoprotein (AGP) and human serum albumin (HSA). The availability of at least a semiquantitative high-throughput assay for assessment of protein binding is expected to aid in bridging the current gap between high-throughput screening and early lead discovery, where cell-based and biochemical assays are deployed routinely to test up to several million compounds rapidly, as opposed to the late-stage candidate drug profiling methods which test at most dozens of compounds at a time. Here, we describe the miniaturization of a pair of assays based on the binding- and displacement-induced changes in fluorescence polarization (FP) of fluorescent small molecule probes known to specifically target the drug-binding sites of these two proteins. A robust and reproducible assay performance was achieved in ≤4 µL assay volume in 1,536-well format. The assays were tested against a validation set of 10 known protein binders, and the results compared favorably with data obtained using protein-coated beads with high-performance liquid chromatography analysis. The miniaturized assays were taken to a high-throughput level in a screen of the LOPAC1280 collection of 1,280 pharmacologically active compounds. The adaptation of the AGP and HSA FP assays to a 1,536-well format should allow their use in early-stage profiling of large-size compound sets.  相似文献   

13.
Buchwald P 《IUBMB life》2010,62(10):724-731
As the ultimate function of proteins depends to a great extent on their binding partners, protein-protein interactions (PPIs) represent a treasure trove of possible new therapeutic targets. Unfortunately, interfaces involved in PPIs are not well-suited for effective small molecule binding. Nevertheless, successful examples of small-molecule PPI inhibitors (PPIIs) are beginning to accumulate, and the sheer number of PPIs that form the human interactome implies that, despite the relative unsuitability of PPIs to serve as "druggable" targets, small-molecule PPIIs can still provide novel pharmacological tools and new innovative drugs in at least some areas. Here, after some illustrative examples, accumulating information on the binding efficiency, molecular size, and chemical space requirements will be briefly reviewed. Therapeutic success can only be achieved if these considerations are incorporated into the search process and if careful medicinal chemistry approaches are used to address the absorption, distribution, metabolism, and excretion requirements of larger molecules that are often needed for this target class due to the lower efficiency of binding.  相似文献   

14.
Selbach M  Mann M 《Nature methods》2006,3(12):981-983
Present screening methods for protein-protein interactions (PPIs) rely on the overexpression of artificial fusion proteins, making it difficult to assess in vivo relevance. Here we combine stable isotope labeling with amino acids in cell culture (SILAC), RNA interference (RNAi), coimmunoprecipitation and quantitative mass-spectrometry analysis to detect cellular interaction partners of endogenous proteins in mammalian cells with very high confidence. We used this screen to identify interaction partners of beta-catenin and Cbl.  相似文献   

15.
Macromolecular interactions are central to most cellular processes. Experimental methods generate diverse data on these interactions ranging from high throughput protein-protein interactions (PPIs) to the crystallised structures of complexes. Despite this, only a fraction of interactions have been identified and therefore predictive methods are essential to fill in the numerous gaps. Many predictive methods use information from related proteins. Accordingly, we review the conservation of interface and ligand binding sites within protein families and their association with conserved residues and Specificity Determining Positions. We then review recent developments in predictive methods for the identification of PPIs, protein interface sites and small molecule ligand binding sites. The challenges that are still faced by the community in these areas are discussed.  相似文献   

16.
Evolutionarily conserved sequences of the E3/protein-ubiquitin ligase Cbl regulate epidermal growth factor receptor (EGF-R) signaling and degradation. These sequences encompass Cbl's tyrosine kinase-binding domain, linker region, RING finger (RF), and an uncharacterized flank C-terminal to the RF (residues 420-436). The latter domain, designated the RF tail, extends beyond Cbl's ubiquitin-conjugating enzyme (Ubc)-binding domain and has no known function. We report structure-function studies evaluating the impact of Cbl RF tail truncations on EGF-R fate in HEK 293 cells. All of the truncation mutants exhibit greatly reduced binding to activated EGF-R and lack proline-rich sequences that mediate direct Cbl association with SH3 proteins such as Grb2, yet a subset of mutants collectively enhances EGF-R ubiquitination, downregulation, and degradation. Significantly, EGF-R degradation correlates better with RF tail-dependent degradation of the Cbl substrate Sprouty2 than with EGF-R ubiquitination: expression of the RF tail truncation mutant Cbl 1-433 enhanced EGF-R ubiquitination while impeding Sprouty2 degradation, and Cbl 1-433 failed to enhance EGF-R downregulation or degradation. Our results suggest that EGF-R fate is controlled by a checkpoint downstream of receptor ubiquitination whose regulation by the Cbl RF tail may require Sprouty2 degradation.  相似文献   

17.
A fluorescence polarization competition assay has been developed to screen for inhibitors of the Escherichia coli FtsZ/ZipA protein-protein interaction. A previously published X-ray costructure demonstrated that a 17-amino-acid peptide, corresponding to FtsZ C-terminal residues 367-383 (FtsZ(367-383)), interacts with the C-terminal FtsZ binding domain of ZipA (ZipA(185-328)). Phage display was employed to identify a unique but related peptide which when further modified and labeled was shown to have a higher affinity to ZipA(185-328) than the FtsZ(367-383) peptide and binds to the same site. This peptide had a six fold increase in fluorescence polarization upon binding to ZipA(185-328) compared to a two fold increase for the FtsZ(367-383) fluorophore. As a result, assay parameters using the phage display peptide were further optimized and adapted for the high-throughput screen. A high-throughput screen of 250,000 compounds identified 29 hits with inhibition equal to or greater than 30% at 50 microg/ml. An X-ray costructure of a promising small molecule in this library complexed with ZipA(185-328) (KI=12 microM) revealed that the compound binds to the same hydrophobic pocket as the FtsZ(367-383) peptide.  相似文献   

18.
The mammalian proto-oncoprotein Cbl and its homologues in Caenorhabditis elegans and Drosophila are evolutionarily conserved negative regulators of the epidermal growth factor receptor (EGF-R). Overexpression of wild-type Cbl enhances down-regulation of activated EGF-R from the cell surface. We report that the Cbl tyrosine kinase-binding (TKB) domain is essential for this activity. Whereas wild-type Cbl enhanced ligand-dependent EGF-R ubiquitination, down-regulation from the cell surface, accumulation in intracellular vesicles, and degradation, a Cbl TKB domain-inactivated mutant (G306E) did not. Furthermore, the transforming truncation mutant Cbl-N (residues 1-357), comprising only the Cbl TKB domain, functioned as a dominant negative protein. It colocalized with EGF-R in intracellular vesicular structures, yet it suppressed down-regulation of EGF-R from the surface of cells expressing endogenous wild-type Cbl. Therefore, Cbl-mediated down-regulation of EGF-R requires the integrity of both the N-terminal TKB domain and additional C-terminal sequences. A Cbl truncation mutant comprising amino acids 1-440 functioned like wild-type Cbl in down-regulation assays. This mutant includes the evolutionarily conserved TKB and RING finger domains but lacks the less conserved C-terminal sequences. We conclude that the evolutionarily conserved N terminus of Cbl is sufficient to effect enhancement of EGF-R ubiquitination and down-regulation from the cell surface.  相似文献   

19.
Ro H  Jang Y  Rhee M 《Molecules and cells》2004,17(1):160-165
Siah is a mammalian homologue of Drosophila seven in absentia (sina) that is required for R7 photoreceptor development. Both the SINA and Siah family interact with ubiquitin-conjugating enzymes via an N-terminal RING domain and the C-terminal domain of SINA/ Siahs interacts with proteins targeted for degradation. Siah induces cell growth arrest by promoting beta-catenin degradation in a phosphorylation-independent manner as a result of indirect binding to beta-catenin. We previously cloned a zebrafish homologue (Siaz) of Siah. Siaz shares high sequence homology with vertebrate Siah-2. We have now examined the role of Siaz in growth regulation using the trypan blue exclusion assay and flow cytometry and found that Siaz induces cellular growth arrest by inhibiting the G2/M transition. The C-terminal domain of Siaz that interacts with target proteins is not required for growth inhibition. We conclude that the N-terminal RING and central domain of Siaz are sufficient to block the G2/M phase transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号