首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1–2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1∶1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and functional characterization of the Drs2p-Cdc50p lipid transport mechanism.  相似文献   

2.
Type IV P-type ATPases (P4-ATPases) are believed to translocate aminophospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. The yeast P4-ATPases, Drs2p and Dnf1p/Dnf2p, flip nitrobenzoxadiazole-labeled phosphatidylserine at the Golgi complex and nitrobenzoxadiazole-labeled phosphatidylcholine (PC) at the plasma membrane, respectively. However, the flippase activities and substrate specificities of mammalian P4-ATPases remain incompletely characterized. In this study, we established an assay for phospholipid flippase activities of plasma membrane-localized P4-ATPases using human cell lines stably expressing ATP8B1, ATP8B2, ATP11A, and ATP11C. We found that ATP11A and ATP11C have flippase activities toward phosphatidylserine and phosphatidylethanolamine but not PC or sphingomyelin. By contrast, ATPase-deficient mutants of ATP11A and ATP11C did not exhibit any flippase activity, indicating that these enzymes catalyze flipping in an ATPase-dependent manner. Furthermore, ATP8B1 and ATP8B2 exhibited preferential flippase activities toward PC. Some ATP8B1 mutants found in patients of progressive familial intrahepatic cholestasis type 1 (PFIC1), a severe liver disease caused by impaired bile flow, failed to translocate PC despite their delivery to the plasma membrane. Moreover, incorporation of PC mediated by ATP8B1 can be reversed by simultaneous expression of ABCB4, a PC floppase mutated in PFIC3 patients. Our findings elucidate the flippase activities and substrate specificities of plasma membrane-localized human P4-ATPases and suggest that phenotypes of some PFIC1 patients result from impairment of the PC flippase activity of ATP8B1.  相似文献   

3.
Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Delta cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN.  相似文献   

4.
The oxysterol binding protein homologue Kes1p has been implicated in nonvesicular sterol transport in Saccharomyces cerevisiae. Kes1p also represses formation of protein transport vesicles from the trans-Golgi network (TGN) through an unknown mechanism. Here, we show that potential phospholipid translocases in the Drs2/Dnf family (type IV P-type ATPases [P4-ATPases]) are downstream targets of Kes1p repression. Disruption of KES1 suppresses the cold-sensitive (cs) growth defect of drs2Δ, which correlates with an enhanced ability of Dnf P4-ATPases to functionally substitute for Drs2p. Loss of Kes1p also suppresses a drs2-ts allele in a strain deficient for Dnf P4-ATPases, suggesting that Kes1p antagonizes Drs2p activity in vivo. Indeed, Drs2-dependent phosphatidylserine translocase (flippase) activity is hyperactive in TGN membranes from kes1Δ cells and is potently attenuated by addition of recombinant Kes1p. Surprisingly, Drs2p also antagonizes Kes1p activity in vivo. Drs2p deficiency causes a markedly increased rate of cholesterol transport from the plasma membrane to the endoplasmic reticulum (ER) and redistribution of endogenous ergosterol to intracellular membranes, phenotypes that are Kes1p dependent. These data suggest a homeostatic feedback mechanism in which appropriately regulated flippase activity in the Golgi complex helps establish a plasma membrane phospholipid organization that resists sterol extraction by a sterol binding protein.  相似文献   

5.
Type IV P-type ATPases (P4-ATPases) use the energy from ATP to “flip” phospholipid across a lipid bilayer, facilitating membrane trafficking events and maintaining the characteristic plasma membrane phospholipid asymmetry. Preferred translocation substrates for the budding yeast P4-ATPases Dnf1 and Dnf2 include lysophosphatidylcholine, lysophosphatidylethanolamine, derivatives of phosphatidylcholine and phosphatidylethanolamine containing a 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) group on the sn-2 C6 position, and were presumed to include phosphatidylcholine and phosphatidylethanolamine species with two intact acyl chains. We previously identified several mutations in Dnf1 transmembrane (TM) segments 1 through 4 that greatly enhance recognition and transport of NBD phosphatidylserine (NBD-PS). Here we show that most of these Dnf1 mutants cannot flip diacylated PS to the cytosolic leaflet to establish PS asymmetry. However, mutation of a highly conserved asparagine (Asn-550) in TM3 allowed Dnf1 to restore plasma membrane PS asymmetry in a strain deficient for the P4-ATPase Drs2, the primary PS flippase. Moreover, Dnf1 N550 mutants could replace the Drs2 requirement for growth at low temperature. A screen for additional Dnf1 mutants capable of replacing Drs2 function identified substitutions of TM1 and 2 residues, within a region called the exit gate, that permit recognition of dually acylated PS. These TM1, 2, and 3 residues coordinate with the “proline + 4” residue within TM4 to determine substrate preference at the exit gate. Moreover, residues from Atp8a1, a mammalian ortholog of Drs2, in these positions allow PS recognition by Dnf1. These studies indicate that Dnf1 poorly recognizes diacylated phospholipid and define key substitutions enabling recognition of endogenous PS.  相似文献   

6.
Flippases (type 4 P-type ATPases) are believed to translocate phospholipids from the exoplasmic to the cytoplasmic leaflet in bilayer membranes. Since flippases are structurally similar to ion-transporting P-type ATPases such as the Ca(2+) ATPase, one important question is how flippases have evolved to transport phospholipids instead of ions. We previously showed that a conserved membrane protein, Cdc50p, is required for the endoplasmic reticulum exit of the Drs2p flippase in yeast. However, Cdc50p is still associated with Drs2p after its transport to the endosomal/trans-Golgi network (TGN) membranes, and its function in the complex with Drs2p is unknown. In this study, we isolated novel temperature-sensitive (ts) cdc50 mutants whose products were still localized to endosomal/TGN compartments at the non-permissive temperature. Mutant Cdc50 proteins colocalized with Drs2p in endosomal/TGN compartments, and they co-immunoprecipitated with Drs2p. These cdc50-ts mutants exhibited defects in vesicle transport from early endosomes to the TGN as the cdc50 deletion mutant did. These results suggest that mutant Cdc50 proteins could be complexed with Drs2p, but the resulting Cdc50p-Drs2p complex is functionally defective at the non-permissive temperature. Cdc50p may play an important role for phospholipid translocation by Drs2p.  相似文献   

7.
Phosphatidylinositol 4-kinases (PI4Ks) regulate vesicle-mediated export from the Golgi apparatus via phosphatidylinositol 4-phosphate (PtdIns4P) binding effector proteins that control vesicle budding reactions and regulate membrane dynamics. Evidence has emerged from the characterization of Golgi PI4K effectors that vesicle budding and lipid dynamics are tightly coupled via a regulatory network that ensures that the appropriate membrane composition is established before a transport vesicle buds from the Golgi. An important hub of this network is protein kinase D, which regulates the activity of PI4K and several PtdIns4P effectors that control sphingolipid and sterol content of Golgi membranes. Other newly identified PtdIns4P effectors include Vps74/GOLPH3, a phospholipid flippase called Drs2 and Sec2, a Rab guanine nucleotide exchange factor (GEF). These effectors orchestrate membrane transformation events facilitating vesicle formation and targeting. In this review, we discuss how PtdIns4P signaling is integrated with membrane biosynthetic and vesicle budding machineries to potentially coordinate these crucial functions of the Golgi apparatus.  相似文献   

8.
Type IV P-type ATPases (P4-ATPases) are a large family of putative phospholipid translocases (flippases) implicated in the generation of phospholipid asymmetry in biological membranes. P4-ATPases are typically the largest P-type ATPase subgroup found in eukaryotic cells, with five members in Saccharomyces cerevisiae, six members in Caenorhabditis elegans, 12 members in Arabidopsis thaliana and 14 members in humans. In addition, many of the P4-ATPases require interaction with a noncatalytic subunit from the CDC50 gene family for their transport out of the endoplasmic reticulum (ER). Deficiency of a P4-ATPase (Atp8b1) causes liver disease in humans, and studies in a variety of model systems indicate that P4-ATPases play diverse and essential roles in membrane biogenesis. In addition to their proposed role in establishing and maintaining plasma membrane asymmetry, P4-ATPases are linked to vesicle-mediated protein transport in the exocytic and endocytic pathways. Recent studies have also suggested a role for P4-ATPases in the nonvesicular intracellular trafficking of sterols. Here, we discuss the physiological requirements for yeast P4-ATPases in phospholipid translocase activity, transport vesicle budding and ergosterol metabolism, with an emphasis on Drs2p and its noncatalytic subunit, Cdc50p.  相似文献   

9.
We previously found that overexpression of DGA1 encoding diacylglycerol acyltransferase (DGAT) in the ∆snf2 disruptant of Saccharomyces cerevisiae caused a significant increase in lipid accumulation and DGAT activity. The present study was conducted to investigate how Dga1p is activated in the ∆snf2 disruptant. To analyze the expression of Dga1p in wild type and the ∆snf2 disruptant, we overexpressed Dga1p with a 6x His tag at the N-terminus and a FLAG tag at the C-terminus. Immunoblotting using anti-6x His and anti-FLAG antibodies revealed that, in addition to full-length protein, Dga1p lacking the N-terminus was produced only in the ∆snf2 disruptant. Full-length Dga1p and N-terminally truncated Dga1p were separated and purified from the lipid body fraction by using anti-FLAG M2 agarose and TALON metal affinity resin. Major DGAT activity was recovered in the purified fraction of N-terminally truncated Dga1p, indicating that proteolytic cleavage at the N-terminal region is involved in DGAT activation in the ∆snf2 disruptant. Analysis of the cleavage site of N-terminally truncated Dga1p revealed a major site between Lys-29 and Ser-30. We then overexpressed truncated Dga1p variants that lacked different N-terminal amino acids and had a FLAG tag at the C-terminus. The homogenate and lipid body fraction of the ∆snf2 disruptant overexpressing Dga1p lacking the N-terminal 29 amino acids (Dga1∆N2p) had higher DGAT activity than that overexpressing Dga1p, indicating that Dga1∆N2p is activated Dga1p. Dga1∆N2p-FLAG(C-terminus) was purified to near homogeneity by anti-FLAG M2 agarose chromatography and maintained significant DGAT activity. These results provide a new strategy to engineer expression of DGAT.  相似文献   

10.
Members of the P(4) subfamily of P-type ATPases catalyze phospholipid transport and create membrane lipid asymmetry in late secretory and endocytic compartments. P-type ATPases usually pump small cations and the transport mechanism involved appears conserved throughout the family. How this mechanism is adapted to flip phospholipids remains to be established. P(4)-ATPases form heteromeric complexes with CDC50 proteins. Dissociation of the yeast P(4)-ATPase Drs2p from its binding partner Cdc50p disrupts catalytic activity (Lenoir, G., Williamson, P., Puts, C. F., and Holthuis, J. C. (2009) J. Biol. Chem. 284, 17956-17967), suggesting that CDC50 subunits play an intimate role in the mechanism of transport by P(4)-ATPases. The human genome encodes 14 P(4)-ATPases while only three human CDC50 homologues have been identified. This implies that each human CDC50 protein interacts with multiple P(4)-ATPases or, alternatively, that some human P(4)-ATPases function without a CDC50 binding partner. Here we show that human CDC50 proteins each bind multiple class-1 P(4)-ATPases, and that in all cases examined, association with a CDC50 subunit is required for P(4)-ATPase export from the ER. Moreover, we find that phosphorylation of the catalytically important Asp residue in human P(4)-ATPases ATP8B1 and ATP8B2 is critically dependent on their CDC50 subunit. These results indicate that CDC50 proteins are integral part of the P(4)-ATPase flippase machinery.  相似文献   

11.
We have purified a minimal core human Ino80 complex from recombinant protein expressed in insect cells. The complex comprises one subunit each of an N-terminally truncated Ino80, actin, Arp4, Arp5, Arp8, Ies2 and Ies6, together with a single heterohexamer of the Tip49a and Tip49b proteins. This core complex has nucleosome sliding activity that is similar to that of endogenous human and yeast Ino80 complexes and is also inhibited by inositol hexaphosphate (IP6). We show that IP6 is a non-competitive inhibitor that acts by blocking the stimulatory effect of nucleosomes on the ATPase activity. The IP6 binding site is located within the C-terminal region of the Ino80 subunit. We have also prepared complexes lacking combinations of Ies2 and Arp5/Ies6 subunits that reveal regulation imposed by each of them individually and synergistically that couples ATP hydrolysis to nucleosome sliding. This coupling between Ies2 and Arp5/Ies6 can be overcome in a bypass mutation of the Arp5 subunit that is active in the absence of Ies2. These studies reveal several underlying mechanisms for regulation of ATPase activity involving a complex interplay between these protein subunits and IP6 that in turn controls nucleosome sliding.  相似文献   

12.
Here, Drs2p, a yeast lipid translocase that belongs to the family of P(4)-type ATPases, was overexpressed in the yeast Saccharomyces cerevisiae together with Cdc50p, its glycosylated partner, as a result of the design of a novel co-expression vector. The resulting high yield allowed us, using crude membranes or detergent-solubilized membranes, to measure the formation from [γ-(32)P]ATP of a (32)P-labeled transient phosphoenzyme at the catalytic site of Drs2p. Formation of this phosphoenzyme could be detected only if Cdc50p was co-expressed with Drs2p but was not dependent on full glycosylation of Cdc50p. It was inhibited by orthovanadate and fluoride compounds. In crude membranes, the phosphoenzyme formed at steady state at 4 °C displayed ADP-insensitive but temperature-sensitive decay. Solubilizing concentrations of dodecyl maltoside left this decay rate almost unaltered, whereas several other detergents accelerated it. Unexpectedly, the dephosphorylation rate for the solubilized Drs2p·Cdc50p complex was inhibited by the addition of phosphatidylserine. Phosphatidylserine exerted its anticipated accelerating effect on the dephosphorylation of Drs2p·Cdc50p complex only in the additional presence of phosphatidylinositol-4-phosphate. These results explain why phosphatidylinositol-4-phosphate tightly controls Drs2p-catalyzed lipid transport and establish the functional relevance of the Drs2p·Cdc50p complex overexpressed here.  相似文献   

13.
The asymmetric transbilayer distribution of phosphatidylserine (PS) in the mammalian plasma membrane and secretory vesicles is maintained, in part, by an ATP-dependent transporter. This aminophospholipid "flippase" selectively transports PS to the cytosolic leaflet of the bilayer and is sensitive to vanadate, Ca(2+), and modification by sulfhydryl reagents. Although the flippase has not been positively identified, a subfamily of P-type ATPases has been proposed to function as transporters of amphipaths, including PS and other phospholipids. A candidate PS flippase ATP8A1 (ATPase II), originally isolated from bovine secretory vesicles, is a member of this subfamily based on sequence homology to the founding member of the subfamily, the yeast protein Drs2, which has been linked to ribosomal assembly, the formation of Golgi-coated vesicles, and the maintenance of PS asymmetry. To determine if ATP8A1 has biochemical characteristics consistent with a PS flippase, a murine homologue of this enzyme was expressed in insect cells and purified. The purified Atp8a1 is inactive in detergent micelles or in micelles containing phosphatidylcholine, phosphatidic acid, or phosphatidylinositol, is minimally activated by phosphatidylglycerol or phosphatidylethanolamine (PE), and is maximally activated by PS. The selectivity for PS is dependent upon multiple elements of the lipid structure. Similar to the plasma membrane PS transporter, Atp8a1 is activated only by the naturally occurring sn-1,2-glycerol isomer of PS and not the sn-2,3-glycerol stereoisomer. Both flippase and Atp8a1 activities are insensitive to the stereochemistry of the serine headgroup. Most modifications of the PS headgroup structure decrease recognition by the plasma membrane PS flippase. Activation of Atp8a1 is also reduced by these modifications; phosphatidylserine-O-methyl ester, lysophosphatidylserine, glycerophosphoserine, and phosphoserine, which are not transported by the plasma membrane flippase, do not activate Atp8a1. Weakly translocated lipids (PE, phosphatidylhydroxypropionate, and phosphatidylhomoserine) are also weak Atp8a1 activators. However, N-methyl-phosphatidylserine, which is transported by the plasma membrane flippase at a rate equivalent to PS, is incapable of activating Atp8a1 activity. These results indicate that the ATPase activity of the secretory granule Atp8a1 is activated by phospholipids binding to a specific site whose properties (PS selectivity, dependence upon glycerol but not serine, stereochemistry, and vanadate sensitivity) are similar to, but distinct from, the properties of the substrate binding site of the plasma membrane flippase.  相似文献   

14.
Type 4 P-type ATPases (P(4)-ATPases) catalyze phospholipid transport to generate phospholipid asymmetry across membranes of late secretory and endocytic compartments, but their kinship to cation-transporting P-type transporters raised doubts about whether P(4)-ATPases alone are sufficient to mediate flippase activity. P(4)-ATPases form heteromeric complexes with Cdc50 proteins. Studies of the enzymatic properties of purified P(4)-ATPase·Cdc50 complexes showed that catalytic activity depends on direct and specific interactions between Cdc50 subunit and transporter, whereas in vivo interaction assays suggested that the binding affinity for each other fluctuates during the transport reaction cycle. The structural determinants that govern this dynamic association remain to be established. Using domain swapping, site-directed, and random mutagenesis approaches, we here show that residues throughout the subunit contribute to forming the heterodimer. Moreover, we find that a precise conformation of the large ectodomain of Cdc50 proteins is crucial for the specificity and functionality to transporter/subunit interactions. We also identified two highly conserved disulfide bridges in the Cdc50 ectodomain. Functional analysis of cysteine mutants that disrupt these disulfide bridges revealed an inverse relationship between subunit binding and P(4)-ATPase-catalyzed phospholipid transport. Collectively, our data indicate that a dynamic association between subunit and transporter is crucial for the transport reaction cycle of the heterodimer.  相似文献   

15.
Neo1p from Saccharomyces cerevisiae is an essential P-type ATPase and potential aminophospholipid translocase (flippase) in the Drs2p family. We have previously implicated Drs2p in protein transport steps in the late secretory pathway requiring ADP-ribosylation factor (ARF) and clathrin. Here, we present evidence that epitope-tagged Neo1p localizes to the endoplasmic reticulum (ER) and Golgi complex and is required for a retrograde transport pathway between these organelles. Using conditional alleles of NEO1, we find that loss of Neo1p function causes cargo-specific defects in anterograde protein transport early in the secretory pathway and perturbs glycosylation in the Golgi complex. Rer1-GFP, a protein that cycles between the ER and Golgi complex in COPI and COPII vesicles, is mislocalized to the vacuole in neo1-ts at the nonpermissive temperature. These phenotypes suggest that the anterograde protein transport defect is a secondary consequence of a defect in a COPI-dependent retrograde pathway. We propose that loss of lipid asymmetry in the cis Golgi perturbs retrograde protein transport to the ER.  相似文献   

16.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential determinant in clathrin-mediated endocytosis (CME). In mammals three type I phosphatidylinositol-4-phosphate 5-kinase (PIPK) enzymes are expressed, with the Iγ-p90 isoform being highly expressed in the brain where it regulates synaptic vesicle (SV) exo-/endocytosis at nerve terminals. How precisely PI(4,5)P2 metabolism is controlled spatially and temporally is still uncertain, but recent data indicate that direct interactions between type I PIPK and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved. Here we demonstrated that PIPKIγ-p90 associates with both the μ and β2 subunits of AP-2 via multiple sites. Crystallographic data show that a peptide derived from the splice insert of the human PIPKIγ-p90 tail binds to a cognate recognition site on the sandwich subdomain of the β2 appendage. Partly overlapping aromatic and hydrophobic residues within the same peptide also can engage the C-terminal sorting signal binding domain of AP-2μ, thereby potentially competing with the sorting of conventional YXXØ motif-containing cargo. Biochemical and structure-based mutagenesis analysis revealed that association of the tail domain of PIPKIγ-p90 with AP-2 involves both of these sites. Accordingly the ability of overexpressed PIPKIγ tail to impair endocytosis of SVs in primary neurons largely depends on its association with AP-2β and AP-2μ. Our data also suggest that interactions between AP-2 and the tail domain of PIPKIγ-p90 may serve to regulate complex formation and enzymatic activity. We postulate a model according to which multiple interactions between PIPKIγ-p90 and AP-2 lead to spatiotemporally controlled PI(4,5)P2 synthesis during clathrin-mediated SV endocytosis.  相似文献   

17.
ADP-ribosylation factor appears to regulate the budding of both COPI and clathrin-coated transport vesicles from Golgi membranes. An arf1Delta synthetic lethal screen identified SWA3/DRS2, which encodes an integral membrane P-type ATPase and potential aminophospholipid translocase (or flippase). The drs2 null allele is also synthetically lethal with clathrin heavy chain (chc1) temperature-sensitive alleles, but not with mutations in COPI subunits or other SEC genes tested. Consistent with these genetic analyses, we found that the drs2Delta mutant exhibits late Golgi defects that may result from a loss of clathrin function at this compartment. These include a defect in the Kex2-dependent processing of pro-alpha-factor and the accumulation of abnormal Golgi cisternae. Moreover, we observed a marked reduction in clathrin-coated vesicles that can be isolated from the drs2Delta cells. Subcellular fractionation and immunofluorescence analysis indicate that Drs2p localizes to late Golgi membranes containing Kex2p. These observations indicate a novel role for a P-type ATPase in late Golgi function and suggest a possible link between membrane asymmetry and clathrin function at the Golgi complex.  相似文献   

18.
Escherichia coli MsbA, the proposed inner membrane lipid flippase, is an essential ATP-binding cassette transporter protein with homology to mammalian multidrug resistance proteins. Depletion or loss of function of MsbA results in the accumulation of lipopolysaccharide and phospholipids in the inner membrane of E. coli. MsbA modified with an N-terminal hexahistidine tag was overexpressed, solubilized with a nonionic detergent, and purified by nickel affinity chromatography to approximately 95% purity. The ATPase activity of the purified protein was stimulated by phospholipids. When reconstituted into liposomes prepared from E. coli phospholipids, MsbA displayed an apparent K(m) of 878 microm and a V(max) of 37 nmol/min/mg for ATP hydrolysis in the presence of 10 mm Mg(2+). Preincubation of MsbA-containing liposomes with 3-deoxy-d-mannooctulosonic acid (Kdo)(2)-lipid A increased the ATPase activity 4-5-fold, with half-maximal stimulation seen at 21 microm Kdo(2)-lipid A. Addition of Kdo(2)-lipid A increased the V(max) to 154 nmol/min/mg and decreased the K(m) to 379 microm. Stimulation was only seen with hexaacylated lipid A species and not with precursors, such as diacylated lipid X or tetraacylated lipid IV(A). MsbA containing the A270T substitution, which renders cells temperature-sensitive for growth and lipid export, displayed ATPase activity similar to that of the wild type protein at 30 degrees C but was significantly reduced at 42 degrees C. These results provide the first in vitro evidence that MsbA is a lipid-activated ATPase and that hexaacylated lipid A is an especially potent activator.  相似文献   

19.
Phosphatidylinositol 3-phosphate (PI(3)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are essential for rapid SNARE-dependent fusion of yeast vacuoles and other organelles. These phosphoinositides also regulate the fusion of reconstituted proteoliposomes. The reconstituted reaction allows separate analysis of phosphoinositide-responsive subreactions: fusion with SNAREs alone, with the addition of the HOPS tethering factor, and with the further addition of the SNARE complex disassembly chaperones Sec17p and Sec18p. Using assays of membrane tethering, trans-SNARE pairing, and lipid mixing, we found that PI(3)P and PI(4,5)P(2) have distinct functions that are asymmetric with respect to R-SNARE (Nyv1p) and the 3Q-SNAREs (Vam3p, Vti1p, and Vam7p). Fusion reactions with the Q-SNAREs and R-SNARE on separate membranes showed that PI(3)P has two distinct functions. PI(3)P on Q-SNARE proteoliposomes promoted Vam7p binding and association with the other two Q-SNAREs. PI(3)P on R-SNARE proteoliposomes was recognized by the PX domain of Vam7p on Q-SNARE proteoliposomes to promote tethering, although this function could be supplanted by the tethering activity of HOPS. PI(4,5)P(2) stimulated fusion when it was on R-SNARE proteoliposomes, apposed to Q-SNARE proteoliposomes bearing PI(3)P. These functions are essential for the phosphoinositide-dependent synergy between HOPS and Sec17p/Sec18p in promoting rapid fusion.  相似文献   

20.
P(4)-ATPases have been implicated in the transport of lipids across cellular membranes. Some P(4)-ATPases are known to associate with members of the CDC50 protein family. Previously, we have shown that the P(4)-ATPase ATP8A2 purified from photoreceptor membranes and reconstituted into liposomes catalyzes the active transport of phosphatidylserine across membranes. However, it was unclear whether ATP8A2 functioned alone or as a complex with a CDC50 protein. Here, we show by mass spectrometry and Western blotting using newly generated anti-CDC50A antibodies that CDC50A is associated with ATP8A2 purified from photoreceptor membranes. ATP8A2 expressed in HEK293T cells assembles with endogenous or expressed CDC50A, but not CDC50B, to generate a heteromeric complex that actively transports phosphatidylserine and to a lesser extent phosphatidylethanolamine across membranes. Chimera CDC50 proteins in which various domains of CDC50B were replaced with the corresponding domains of CDC50A were used to identify domains important in the formation of a functional ATP8A2-CDC50 complex. These studies indicate that both the transmembrane and exocytoplasmic domains of CDC50A are required to generate a functionally active complex. The N-terminal cytoplasmic domain of CDC50A appears to play a direct role in the reaction cycle. Mutagenesis studies further indicate that the N-linked oligosaccharide chains of CDC50A are required for stable expression of an active ATP8A2-CDC50A lipid transport complex. Together, our studies indicate that CDC50A is the β-subunit of ATP8A2 and is crucial for the correct folding, stable expression, export from endoplasmic reticulum, and phosphatidylserine flippase activity of ATP8A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号