首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ligation of an adapter oligonucleotide to a single-stranded cDNA is central to many molecular biology techniques. Current single-stranded ligation approaches suffer from low efficiencies and are strongly inhibited by preexisting DNA secondary structure. We develop an approach for ligating low concentrations of single-stranded DNAs to a DNA adapter with near-quantitative efficiency, unaffected by secondary structure in the target DNA. This efficient DNA ligation reaction will facilitate development of robust procedures for quantifying small amounts of highly structured cDNAs and their RNA templates.  相似文献   

2.
5′-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5′-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.  相似文献   

3.
Nucleotide excision repair functions to protect genome integrity, and ongoing studies using excision repair sequencing (XR-seq) have contributed to our understanding of how cells prioritize repair across the genome. In this method, the products of excision repair bearing damaged DNA are captured, sequenced, and then mapped genome-wide at single-nucleotide resolution. However, reagent requirements and complex procedures have limited widespread usage of this technique. In addition to the expense of these reagents, it has been hypothesized that the immunoprecipitation step using antibodies directed against damaged DNA may introduce bias in different sequence contexts. Here, we describe a newly developed adaptation called dA-tailing and adaptor ligation (ATL)–XR-seq, a relatively simple XR-seq method that avoids the use of immunoprecipitation targeting damaged DNA. ATL-XR-seq captures repair products by 3′-dA-tailing and 5′-adapter ligation instead of the original 5′- and 3′-dual adapter ligation. This new approach avoids adapter dimer formation during subsequent PCR, omits inefficient and time-consuming purification steps, and is very sensitive. In addition, poly(dA) tail length heterogeneity can serve as a molecular identifier, allowing more repair hotspots to be mapped. Importantly, a comparison of both repair mapping methods showed that no major bias is introduced by the anti-UV damage antibodies used in the original XR-seq procedure. Finally, we also coupled the described dA-tailing approach with quantitative PCR in a new method to quantify repair products. These new methods provide powerful and user-friendly tools to qualitatively and quantitatively measure excision repair.  相似文献   

4.
In this study we present an improved polymerase chain reaction (PCR)-based methodology to generate large amounts of high-quality complementary DNA (cDNA) from small amounts of initial total RNA. Global amplification of cDNA makes it possible to simultaneously clone many cDNAs and to construct directional cDNA libraries from a sequence-abundance-normalized cDNA population, and also permits rapid amplification of cDNA ends (RACE), from a limited amount of starting material. The priming of cDNAs with an adapter oligo-deoxythymidine (oligo-dT) primer and the ligation of a modified oligonucleotide to the 3′ end of single-stranded cDNAs, through the use of T4 RNA ligase, generates known sequences on either end of the cDNA population. This helps in the global amplification of cDNAs and in the sequence-abundance normalization of the cDNA population through the use of PCR. Utilization of a long-range PCR enzyme mix to amplify the cDNA population helps to reduce bias toward the preferential amplification of shorter molecules. Incorporation of restriction sites in the PCR primers allows the amplified cDNAs to be directionally cloned into appropriate cloning vectors to generate cDNA libraries. RACE-PCR done with biotinylated primers and streptavidin-coated para-magnetic particles are used for the efficient isolation of either full-length coding or noncoding strands.  相似文献   

5.

Background

Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences.

Results

We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates.

Conclusion

We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.  相似文献   

6.
Adapter ligation is a critical first step in many microRNA analysis methods including microarray, qPCR, and sequencing. Previous studies have shown that ligation bias can have dramatic effects on both the fidelity of expression profiles and reproducibility across samples. We have developed a method for high efficiency and low bias microRNA capture by 3′ adapter ligation using T4 RNA ligase that does not require pooled adapters. Using a panel of 20 microRNA, we investigated the effects of ligase type, PEG concentration, ligase amount, adapter concentration, incubation time, incubation temperature, and adapter design on capture efficiency and bias. Of these factors, high PEG% was found to be critical in suppressing ligation bias. We obtained high average capture efficiency and low CV across the 20 microRNA panel, both in idealized buffer conditions (86%±10%) and total RNA spiking conditions (64%±17%). We demonstrate that this method is reliable across microRNA species that previous studies have had difficulty capturing and that our adapter design performs significantly better than the common adapter designs. Further, we demonstrate that the optimization methodology must be specifically designed for minimizing bias in order to obtain the ideal reaction parameters.  相似文献   

7.
The feasibility of genome‐scale studies from archaeological material remains critically dependent on the ability to access endogenous, authentic DNA. In the majority of cases, this represents a few per cent of the DNA extract, at most. A number of specific pre‐extraction protocols for bone powder aimed to improve ancient DNA recovery before library amplification have recently been developed. Here, we test the effects of combining two of such protocols, a bleach wash and a predigestion step, on 12 bone samples of Atlantic cod and domestic horse aged 750–1350 cal. years before present. Using high‐throughput sequencing, we show that combined together, bleach wash and predigestion consistently yield DNA libraries with higher endogenous content than either of these methods alone. Additionally, the molecular complexity of these libraries is improved and endogenous DNA templates show larger size distributions. Other library characteristics, such as DNA damage profiles or the composition of microbial communities, are little affected by the pre‐extraction protocols. Application of the combined protocol presented in this study will facilitate the genetic analysis of an increasing number of ancient remains and will reduce the cost of whole‐genome sequencing.  相似文献   

8.
During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life.  相似文献   

9.
10.
Metabarcoding approaches use total and typically degraded DNA from environmental samples to analyse biotic assemblages and can potentially be carried out for any kinds of organisms in an ecosystem. These analyses rely on specific markers, here called metabarcodes, which should be optimized for taxonomic resolution, minimal bias in amplification of the target organism group and short sequence length. Using bioinformatic tools, we developed metabarcodes for several groups of organisms: fungi, bryophytes, enchytraeids, beetles and birds. The ability of these metabarcodes to amplify the target groups was systematically evaluated by (i) in silico PCRs using all standard sequences in the EMBL public database as templates, (ii) in vitro PCRs of DNA extracts from surface soil samples from a site in Varanger, northern Norway and (iii) in vitro PCRs of DNA extracts from permanently frozen sediment samples of late-Pleistocene age (~16,000-50,000 years bp) from two Siberian sites, Duvanny Yar and Main River. Comparison of the results from the in silico PCR with those obtained in vitro showed that the in silico approach offered a reliable estimate of the suitability of a marker. All target groups were detected in the environmental DNA, but we found large variation in the level of detection among the groups and between modern and ancient samples. Success rates for the Pleistocene samples were highest for fungal DNA, whereas bryophyte, beetle and bird sequences could also be retrieved, but to a much lesser degree. The metabarcoding approach has considerable potential for biodiversity screening of modern samples and also as a palaeoecological tool.  相似文献   

11.
Dabney J  Meyer M 《BioTechniques》2012,52(2):87-94
High-throughput sequencing technologies frequently necessitate the use of PCR for sequencing library amplification. PCR is a sometimes enigmatic process and is known to introduce biases. Here we perform a simple amplification-sequencing assay using 10 commercially available polymerase-buffer systems to amplify libraries prepared from both modern and ancient DNA. We compare the performance of the polymerases with respect to a previously uncharacterized template length bias, as well as GC-content bias, and find that simply avoiding certain polymerase can dramatically decrease the occurrence of both. For amplification of ancient DNA, we found that some commonly used polymerases strongly bias against amplification of endogenous DNA in favor of GC-rich microbial contamination, in our case reducing the fraction of endogenous sequences to almost half.  相似文献   

12.
A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments.  相似文献   

13.
High-throughput sequencing (HTS) has become a powerful tool for the detection of and sequence characterization of microRNAs (miRNA) and other small RNAs (sRNA). Unfortunately, the use of HTS data to determine the relative quantity of different miRNAs in a sample has been shown to be inconsistent with quantitative PCR and Northern Blot results. Several recent studies have concluded that the major contributor to this inconsistency is bias introduced during the construction of sRNA libraries for HTS and that the bias is primarily derived from the adaptor ligation steps, specifically where single stranded adaptors are sequentially ligated to the 3’ and 5’-end of sRNAs using T4 RNA ligases. In this study we investigated the effects of ligation bias by using a pool of randomized ligation substrates, defined mixtures of miRNA sequences and several combinations of adaptors in HTS library construction. We show that like the 3’ adaptor ligation step, the 5’ adaptor ligation is also biased, not because of primary sequence, but instead due to secondary structures of the two ligation substrates. We find that multiple secondary structural factors influence final representation in HTS results. Our results provide insight about the nature of ligation bias and allowed us to design adaptors that reduce ligation bias and produce HTS results that more accurately reflect the actual concentrations of miRNAs in the defined starting material.  相似文献   

14.
Chlamydomonas reinhardtii is a prospective model system for understanding molecular mechanisms associated with DNA repair in plants and algae. To explore this possibility, we have developed an in vitro repair system from C. reinhardtii cell-free extracts that can efficiently repair UVC damage (Thymine-dimers) in the DNA. We observed that excision repair (ER) synthesis based nucleotide incorporation, specifically in UVC damaged supercoiled (SC) DNA, was followed by ligation of nicks. Photoreactivation efficiently competed out the ER in the presence of light. In addition, repair efficiency in cell-free extracts from ER deficient strains was several fold lower than that of wild-type cell extract. Interestingly, the inhibitor profile of repair DNA polymerase involved in C. reinhardtii in vitro ER system was akin to animal rather than plant DNA polymerase. The methodology to prepare repair competent cell-free extracts described in the current study can aid further molecular characterization of ER pathway in C. reinhardtii.  相似文献   

15.
16.
Non-enzymatic, template-directed ligation of oligonucleotides in aqueous solution has been of great interest because of its potential synthetic and biomedical utility and implications for the origin of life. Though there are many methods for template-directed chemical ligation of oligonucleotides, there are only three reported photochemical methods. In the first report, template-directed photoligation was effected by cyclobutane dimer formation between the 5'- and 3'-terminal thymidines of two oligonucleotides with >290 nm light, which also damages DNA itself. To make the photochemistry of native DNA more selective, we have replaced the thymidine at the 5'-end of one oligonucleotide with 4-thiothymidine (s4T) and show that it photoreacts at 366 nm with a T at the 3'-endof another oligonucleotide in the presence of a complementary template. When a single mismatch is introduced opposite either the s4T or its adjoining T, the ligation efficiency drops by a factor of five or more. We also show that by linking the two ends of the oligonucleotides together, photoligation can be used to form circular DNA molecules and to 'photopadlock' circular DNA templates. Thus, s4T-mediated photo-ligation may have applications to phototriggered antisense-based or antigene-based genetic tools, diagnostic agents and drugs, especially for those situations in which chemical or enzyme-mediated ligation isundesirable or impossible, for example inside a cell.  相似文献   

17.
There is a rapidly developing need for new technologies to amplify millions of different targets from genomic DNA for high throughput genotyping and population gene-sequencing from diverse species. Here we describe a novel approach for the specific selection and amplification of genomic DNA fragments of interest that eliminates the need for costly and time consuming synthesis and testing of potentially millions of amplicon-specific primers. This technique relies upon Type IIs restriction enzyme digestion of genomic DNA and ligation of the fragments to double-sided adapters to form closed-circular DNA molecules. The novel use of double-sided adapters, assembled through the combinatorial use of two small universal sets of oligonucleotide building blocks, provides greater selection capacity by utilizing both sides of the adapter in a sequence-specific ligation event. As demonstrated, formation of circular structures results in protection of the desired molecules from nuclease treatment and enables a level of selectivity high enough to isolate single, or multiple, pre-defined fragments from the human genome when digested at over five million sites. Priming sites incorporated into the adapter allows the utilization of a common pair of primers for the amplification of any adapter-captured DNA fragment of interest.  相似文献   

18.
19.
Linear amplification for deep sequencing (LADS) is an amplification method that produces representative libraries for Illumina next-generation sequencing within 2 d. The method relies on attaching two different sequencing adapters to blunt-end repaired and A-tailed DNA fragments, wherein one of the adapters is extended with the sequence for the T7 RNA polymerase promoter. Ligated and size-selected DNA fragments are transcribed in vitro with high RNA yields. Subsequent cDNA synthesis is initiated from a primer complementary to the first adapter, ensuring that the library will only contain full-length fragments with two distinct adapters. Contrary to the severely biased representation of AT- or GC-rich fragments in standard PCR-amplified libraries, the sequence coverage in T7-amplified libraries is indistinguishable from that of nonamplified libraries. Moreover, in contrast to amplification-free methods, LADS can generate sequencing libraries from a few nanograms of DNA, which is essential for all applications in which the starting material is limited.  相似文献   

20.
The spectrum of postmortem damage in mitochondrial DNA was analyzed in a large data set of cloned sequences from ancient human specimens. The most common forms of damage observed are two complementary groups of transitions, termed "type 1" (adenine-->guanine/thymine-->cytosine) and "type 2" (cytosine-->thymine/guanine-->adenine). Single-primer extension PCR and enzymatic digestion with uracil-N-glycosylase confirm that each of these groups of transitions result from a single event, the deamination of adenine to hypoxanthine, and cytosine to uracil, respectively. The predominant form of transition-manifested damage varies by sample, though a marked bias toward type 2 is observed with increasing amounts of damage. The two transition types can be used to identify the original strand, light (L) or heavy (H), on which the initial damage event occurred, and this can increase the number of detected jumping-PCR artifacts by up to 80%. No bias toward H-strand-specific damage events is noted within the hypervariable 1 region of human mitochondria, suggesting the rapid postmortem degradation of the secondary displacement (D-loop) H strand. The data also indicate that, as damage increases within a sample, fewer H strands retain the ability to act as templates for enzymatic amplification. Last, a significant correlation between archaeological site and sample-specific level of DNA damage was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号