首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The non-conventional oleaginous yeast Yarrowia lipolytica shows great industrial promise. It naturally produces certain compounds of interest but can also artificially generate non-native metabolites, thanks to an engineering process made possible by the significant expansion of a dedicated genetic toolbox. In this review, we present recently developed synthetic biology tools that facilitate the manipulation of Y. lipolytica, including 1) DNA assembly techniques, 2) DNA parts for constructing expression cassettes, 3) genome-editing techniques, and 4) computational tools.  相似文献   

3.
Genetic variation is believed to be a prerequisite for the short-and long-term survival of the plant species in their natural habitat. It depends on many environmental factors which determine the number of alleles on various loci in the genome. Therefore, it is important to understand the genetic composition and structure of the rare and endangered plant species from their natural habitat to develop successful management strategies for their conservation. However, rare and endangered plant species have low genetic diversity due to which their survival rate is decreasing in the wilds. The evaluation of genetic diversity of such species is very important for their conservation and gene manipulation. However, plant species can be conserved by in situ and in vitro methods and each has advantages and disadvantages. DNA banking can be considered as a means of complimentary method for the conservation of plant species by preserving their genomic DNA at low temperatures. Such approach of preservation of biological information provides opportunity for researchers to search novel genes and its products. Therefore, in this review we are describing some potential biotechnological approaches for the conservation and further manipulation of these rare and endangered plant species to enhance their yield and quality traits.  相似文献   

4.
The recent introduction of several transposable elements in zebrafish opens new frontiers for genetic manipulation in this important vertebrate model. This review discusses transposable elements as mutagenesis tools for fish functional genomics. We review various mutagenesis strategies that were previously applied in other genetic models, such as Drosophila, Arabidopsis, and mouse, that may be beneficial if applied in fish. We also discuss the forthcoming challenges of high-throughput functional genomics in fish.  相似文献   

5.
Although epitope tagging has been widely used for analyzing protein function in many organisms, there are few genetic tools for epitope tagging in Tetrahymena. In this study, we describe several C-terminal epitope tagging modules that can be used to express tagged proteins in Tetrahymena cells by both plasmid- and PCR-based strategies.  相似文献   

6.
Methane is becoming a major candidate for a prominent carbon feedstock in the future, and the bioconversion of methane into valuable products has drawn increasing attention. To facilitate the use of methanotrophic organisms as industrial strains and accelerate our ability to metabolically engineer methanotrophs, simple and rapid genetic tools are needed. Electroporation is one such enabling tool, but to date it has not been successful in a group of methanotrophs of interest for the production of chemicals and fuels, the gammaproteobacterial (type I) methanotrophs. In this study, we developed electroporation techniques with a high transformation efficiency for three different type I methanotrophs: Methylomicrobium buryatense 5GB1C, Methylomonas sp. strain LW13, and Methylobacter tundripaludum 21/22. We further developed this technique in M. buryatense, a haloalkaliphilic aerobic methanotroph that demonstrates robust growth with a high carbon conversion efficiency and is well suited for industrial use for the bioconversion of methane. On the basis of the high transformation efficiency of M. buryatense, gene knockouts or integration of a foreign fragment into the chromosome can be easily achieved by direct electroporation of PCR-generated deletion or integration constructs. Moreover, site-specific recombination (FLP-FRT [FLP recombination target] recombination) and sacB counterselection systems were employed to perform marker-free manipulation, and two new antibiotics, zeocin and hygromycin, were validated to be antibiotic markers in this strain. Together, these tools facilitate the rapid genetic manipulation of M. buryatense and other type I methanotrophs, promoting the ability to perform fundamental research and industrial process development with these strains.  相似文献   

7.
Fusobacterium nucleatum is an important oral anaerobic pathogen involved in periodontal and systemic infections. Studies of the molecular mechanisms involved in fusobacterial virulence and adhesion have been limited by lack of systems for efficient genetic manipulation. Plasmids were isolated from eight strains of F. nucleatum. The smallest plasmid, pKH9 (4,975 bp), was characterized and used to create new vectors for fusobacterial genetic manipulation. DNA sequence analysis of pKH9 revealed an open reading frame (ORF) encoding a putative autonomous rolling circle replication protein (Rep), an ORF predicted to encode a protein homologous to members of the FtsK/SpoIIIE cell division-DNA segregation protein family, and an operon encoding a putative toxin-antitoxin plasmid addiction system (txf-axf). Deletion analysis localized the pKH9 replication region in a 0.96-kbp fragment. The pKH9 rep gene is not present in this fragment, suggesting that pKH9 can replicate in fusobacteria independently of the Rep protein. A pKH9-based, compact Escherichia coli-F. nucleatum shuttle plasmid was constructed and found to be compatible with a previously described pFN1-based fusobacterial shuttle plasmid. Deletion of the pKH9 putative addiction system (txf-axf) reduced plasmid stability in fusobacteria, indicating its addiction properties and suggesting it to be the first plasmid addiction system described for fusobacteria. pKH9, its genetic elements, and its shuttle plasmid derivatives can serve as useful tools for investigating fusobacterial properties important in biofilm ecology and pathogenesis.  相似文献   

8.
Lactobacilli and bifidobacteria are important members of the gastrointestinal microflora of man and animals. There is a substantial and growing body of evidence that these microbes provide benefits to the host in which they reside. Understanding the roles of these two groups of bacteria in the intestine continues to be a significant challenge. To this end, genetic characterisation and manipulation of intestinal lactobacilli and bifidobacteria is essential to define their contributions to the intestinal microflora, and to potentially exploit any beneficial or unique properties. This review will describe the tools and strategies currently available for the genetic manipulation of lactobacilli and bifidobacteria. Additionally, the ramifications and opportunities that may arise as a result of the genetic manipulation of probiotic lactobacilli and bifidobacteria will be addressed.  相似文献   

9.
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.  相似文献   

10.
Recent findings concerning Drosophila melanogaster intestinal pathology suggest that this model is well suited for the study of intestinal stem cell physiology during aging, stress and infection. Despite the physiological divergence between vertebrates and insects, the modeling of human intestinal diseases is possible in Drosophila because of the high degree of conservation between Drosophila and mammals with respect to the signaling pathways that control intestinal development, regeneration and disease. Furthermore, the genetic amenability of Drosophila makes it an advantageous model species. The well-studied intestinal stem cell lineage, as well as the tools available for its manipulation in vivo, provide a promising framework that can be used to elucidate many aspects of human intestinal pathology. In this Perspective, we discuss recent advances in the study of Drosophila intestinal infection and pathology, and briefly review the parallels and differences between human and Drosophila intestinal regeneration and disease.  相似文献   

11.
Genetic code expansion (GCE) enables the site-specific incorporation of non-canonical amino acids as novel building blocks for the investigation and manipulation of proteins. The advancement of genetic code expansion has been benefited from the development of synthetic biology, while genetic code expansion also helps to create more synthetic biology tools. In this review, we summarize recent advances in genetic code expansion brought by synthetic biology progresses, including engineering of the translation machinery, genome-wide codon reassignment, and the biosynthesis of non-canonical amino acids. We highlight the emerging application of this technology in construction of new synthetic biology parts, circuits, chassis, and products.  相似文献   

12.
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with “build-your-own” microbial host.  相似文献   

13.
Filamentous fungi are the organisms of choice for most industrial biotechnology. Some species can produce a variety of secondary metabolites and enzymes of commercial interest, and the production of valuable molecules has been enhanced through different molecular tools. Methods for genetic manipulation and transformation have been essential for the optimization of these organisms. The genus Simplicillium has attracted increased attention given several potential biotechnological applications. The Simplicillium genus harbors several entomopathogenic species and some isolates have been explored for bioremediation of heavy metal contaminants. Furthermore, the myriad of secondary metabolites isolated from Simplicillium spp. render these organisms as ideal targets for deep exploration and further biotechnological mining possibilities. However, the lack of molecular tools hampered the exploration of this genus. Thus, an Agrobacterium tumefaciens-mediated transformation method was established for Simplicillium subtropicum, employing the far-red fluorescent protein TURBOFP635/Katushka, as a visual marker, and the selection marker SUR gene, that confers resistance to chlorimuron ethyl. Notably, one round of transformation using the established method yielded almost 400 chlorimuron resistant isolates. Furthermore, these transformants displayed mitotic stability for, at least, five generations. We anticipate that this method can be useful for deep molecular exploration and improvement of strains in the Simplicillium genus.  相似文献   

14.
Toolboxes for cyanobacteria: Recent advances and future direction   总被引:1,自引:0,他引:1  
Photosynthetic cyanobacteria are important primary producers and model organisms for studying photosynthesis and elements cycling on earth. Due to the ability to absorb sunlight and utilize carbon dioxide, cyanobacteria have also been proposed as renewable chassis for carbon-neutral “microbial cell factories”. Recent progresses on cyanobacterial synthetic biology have led to the successful production of more than two dozen of fuels and fine chemicals directly from CO2, demonstrating their potential for scale-up application in the future. However, compared with popular heterotrophic chassis like Escherichia coli and Saccharomyces cerevisiae, where abundant genetic tools are available for manipulations at levels from single gene, pathway to whole genome, limited genetic tools are accessible to cyanobacteria. Consequently, this significant technical hurdle restricts both the basic biological researches and further development and application of these renewable systems. Though still lagging the heterotrophic chassis, the vital roles of genetic tools in tuning of gene expression, carbon flux re-direction as well as genome-wide manipulations have been increasingly recognized in cyanobacteria. In recent years, significant progresses on developing and introducing new and efficient genetic tools have been made for cyanobacteria, including promoters, riboswitches, ribosome binding site engineering, clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease (CRISPR/Cas) systems, small RNA regulatory tools and genome-scale modeling strategies. In this review, we critically summarize recent advances on development and applications as well as technical limitations and future directions of the genetic tools in cyanobacteria. In addition, toolboxes feasible for using in large-scale cultivation are also briefly discussed.  相似文献   

15.
Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases.  相似文献   

16.
Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.  相似文献   

17.
The development of the microalgal industry requires advances in every aspect of microalgal biotechnology. In this regard, the availability of genetic engineering tools for industrially-promising species is key. As Scenedesmus almeriensis has promise for industrial use, we describe here an Agrobacterium-based methodology that allows stable genetic transformation of it for the first time, thus opening the way to its genetic manipulation. Transformation was accomplished using two different antibiotic resistance genes [hygromicine phophotransferase (hpt) and Shble] and it is credited by PCR amplification of both hpt/Shble and GUS genes and by the β-glucuronidase activity of transformed cells. Nevertheless, the single 35S promoter seems unable to direct gene expression to a convenient level in S. almeriensis as suggested by the low GUS enzymatic activity. Temperature was critical for the transformation efficiency.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号