共查询到20条相似文献,搜索用时 0 毫秒
1.
We use a mathematical model to determine the factors affecting the delayed or rare coreceptor switch in HIV-1 subtype C infected
individuals. The model takes into account the two main target cells for the CXCR4-tropic and CCR5-tropic virus and includes
the the lytic and non-lytic immune responses. Computer-based simulations and a sensitivity analysis of the model predict that
a persistent immune response suppresses the CXCR4-tropic virus to low levels and hence preventing a phenotypic switch. However,
not only should the immune response be persistent, but it should have an efficient lytic immune response rather that an efficient
non-lytic response. In addition, we also find that the availability of macrophage cells and enhanced viral kinetics are also
crucial for the dominance of the R5 strain. We suggest that an altered host environment probably as a result of immune activation
may explain the difference in coreceptor switching kinetics between HIV-1 subtype B and subtype C individuals. 相似文献
2.
The HIV-1 subtype C accounts for an important fraction of HIV infections in east Africa, but little is known about the genetic characteristics and evolutionary history of this epidemic. Here we reconstruct the origin and spatiotemporal dynamics of the major HIV-1 subtype C clades circulating in east Africa. A large number (n = 1,981) of subtype C pol sequences were retrieved from public databases to explore relationships between strains from the east, southern and central African regions. Maximum-likelihood phylogenetic analysis of those sequences revealed that most (>70%) strains from east Africa segregated in a single regional-specific monophyletic group, here called CEA. A second major Ethiopian subtype C lineage and a large collection of minor Kenyan and Tanzanian subtype C clades of southern African origin were also detected. A Bayesian coalescent-based method was then used to reconstruct evolutionary parameters and migration pathways of the CEA African lineage. This analysis indicates that the CEA clade most probably originated in Burundi around the early 1960s, and later spread to Ethiopia, Kenya, Tanzania and Uganda, giving rise to major country-specific monophyletic sub-clusters between the early 1970s and early 1980s. The results presented here demonstrate that a substantial proportion of subtype C infections in east Africa resulted from dissemination of a single HIV local variant, probably originated in Burundi during the 1960s. Burundi was the most important hub of dissemination of that subtype C clade in east Africa, fueling the origin of new local epidemics in Ethiopia, Kenya, Tanzania and Uganda. Subtype C lineages of southern African origin have also been introduced in east Africa, but seem to have had a much more restricted spread. 相似文献
3.
Hong Zhang Damien C. Tully Federico G. Hoffmann Jun He Chipepo Kankasa Charles Wood 《PloS one》2010,5(2)
Background
Mother-to-child transmission of HIV-1 remains a significant problem in the resource-constrained settings where anti-retroviral therapy is still not widely available. Understanding the earliest events during HIV-1 transmission and characterizing the newly transmitted or founder virus is central to intervention efforts. In this study, we analyzed the viral env quasispecies of six mother-infant transmission pairs (MIPs) and characterized the genetic features of envelope glycoprotein that could influence HIV-1 subtype C perinatal transmission.Methodology and Findings
The V1-V5 region of env was amplified from 6 MIPs baseline samples and 334 DNA sequences in total were analyzed. A comparison of the viral population derived from the mother and infant revealed a severe genetic bottleneck occurring during perinatal transmission, which was characterized by low sequence diversity in the infant. Phylogenetic analysis indicates that most likely in all our infant subjects a single founder virus was responsible for establishing infection. Furthermore, the newly transmitted viruses from the infant had significantly fewer potential N-linked glycosylation sites in Env V1-V5 region and showed a propensity to encode shorter variable loops compared to the nontransmitted viruses. In addition, a similar intensity of selection was seen between mothers and infants with a higher rate of synonymous (dS) compared to nonsynonymous (dN) substitutions evident (dN/dS<1).Conclusions
Our results indicate that a strong genetic bottleneck occurs during perinatal transmission of HIV-1 subtype C. This is evident through population diversity and phylogenetic patterns where a single viral variant appears to be responsible for infection in the infants. As a result the newly transmitted viruses are less diverse and harbored significantly less glycosylated envelope. This suggests that viruses with the restricted glycosylation in envelope glycoprotein appeared to be preferentially transmitted during HIV-1 subtype C perinatal transmission. In addition, our findings also indicated that purifying selection appears to predominate in shaping the early intrahost evolution of HIV-1 subtype C envelope sequences. 相似文献4.
Rong Rong Bing Li Rebecca M. Lynch Richard E. Haaland Megan K. Murphy Joseph Mulenga Susan A. Allen Abraham Pinter George M. Shaw Eric Hunter James E. Robinson S. Gnanakaran Cynthia A. Derdeyn 《PLoS pathogens》2009,5(9)
One aim for an HIV vaccine is to elicit neutralizing antibodies (Nab) that can limit replication of genetically diverse viruses and prevent establishment of a new infection. Thus, identifying the strengths and weaknesses of Nab during the early stages of natural infection could prove useful in achieving this goal. Here we demonstrate that viral escape readily occurred despite the development of high titer autologous Nab in two subjects with acute/early subtype C infection. To provide a detailed portrayal of the escape pathways, Nab resistant variants identified at multiple time points were used to create a series of envelope (Env) glycoprotein chimeras and mutants within the background of a corresponding newly transmitted Env. In one subject, Nab escape was driven predominantly by changes in the region of gp120 that extends from the beginning of the V3 domain to the end of the V5 domain (V3V5). However, Nab escape pathways in this subject oscillated and at times required cooperation between V1V2 and the gp41 ectodomain. In the second subject, escape was driven by changes in V1V2. This V1V2-dependent escape pathway was retained over time, and its utility was reflected in the virus''s ability to escape from two distinct monoclonal antibodies (Mabs) derived from this same patient via introduction of a single potential N-linked glycosylation site in V2. Spatial representation of the sequence changes in gp120 suggested that selective pressure acted upon the same regions of Env in these two subjects, even though the Env domains that drove escape were different. Together the findings argue that a single mutational pathway is not sufficient to confer escape in early subtype C HIV-1 infection, and support a model in which multiple strategies, including potential glycan shifts, direct alteration of an epitope sequence, and cooperative Env domain conformational masking, are used to evade neutralization. 相似文献
5.
Penny L. Moore Nthabeleng Ranchobe Bronwen E. Lambson Elin S. Gray Eleanor Cave Melissa-Rose Abrahams Gama Bandawe Koleka Mlisana Salim S. Abdool Karim Carolyn Williamson Lynn Morris the CAPRISA study the NIAID Center for HIV/AIDS Vaccine Immunology 《PLoS pathogens》2009,5(9)
We previously showed that HIV-1 subtype C viruses elicit potent but highly type-specific neutralizing antibodies (nAb) within the first year of infection. In order to determine the specificity and evolution of these autologous nAbs, we examined neutralization escape in four individuals whose responses against the earliest envelope differed in magnitude and potency. Neutralization escape occurred in all participants, with later viruses showing decreased sensitivity to contemporaneous sera, although they retained sensitivity to new nAb responses. Early nAb responses were very restricted, occurring sequentially and targeting only two regions of the envelope. In V1V2, limited amino acid changes often involving indels or glycans, mediated partial or complete escape, with nAbs targeting the V1V2 region directly in 2 cases. The alpha-2 helix of C3 was also a nAb target, with neutralization escape associated with changes to positively charged residues. In one individual, relatively high titers of anti-C3 nAbs were required to drive genetic escape, taking up to 7 weeks for the resistant variant to predominate. Thereafter titers waned but were still measurable. Development of this single anti-C3 nAb specificity was associated with a 7-fold drop in HIV-1 viral load and a 4-fold rebound as the escape mutation emerged. Overall, our data suggest the development of a very limited number of neutralizing antibody specificities during the early stages of HIV-1 subtype C infection, with temporal fluctuations in specificities as escape occurs. While the mechanism of neutralization escape appears to vary between individuals, the involvement of limited regions suggests there might be common vulnerabilities in the HIV-1 subtype C transmitted envelope. 相似文献
6.
Mandla Mlotshwa Catherine Riou Denis Chopera Debra de Assis Rosa Roman Ntale Florette Treunicht Zenda Woodman Lise Werner Francois van Loggerenberg Koleka Mlisana Salim Abdool Karim Carolyn Williamson Clive M. Gray the CAPRISA Study Team 《Journal of virology》2010,84(22):12018-12029
Deciphering immune events during early stages of human immunodeficiency virus type 1 (HIV-1) infection is critical for understanding the course of disease. We characterized the hierarchy of HIV-1-specific T-cell gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses during acute subtype C infection in 53 individuals and associated temporal patterns of responses with disease progression in the first 12 months. There was a diverse pattern of T-cell recognition across the proteome, with the recognition of Nef being immunodominant as early as 3 weeks postinfection. Over the first 6 months, we found that there was a 23% chance of an increased response to Nef for every week postinfection (P = 0.0024), followed by a nonsignificant increase to Pol (4.6%) and Gag (3.2%). Responses to Env and regulatory proteins appeared to remain stable. Three temporal patterns of HIV-specific T-cell responses could be distinguished: persistent, lost, or new. The proportion of persistent T-cell responses was significantly lower (P = 0.0037) in individuals defined as rapid progressors than in those progressing slowly and who controlled viremia. Almost 90% of lost T-cell responses were coincidental with autologous viral epitope escape. Regression analysis between the time to fixed viral escape and lost T-cell responses (r = 0.61; P = 0.019) showed a mean delay of 14 weeks after viral escape. Collectively, T-cell epitope recognition is not a static event, and temporal patterns of IFN-γ-based responses exist. This is due partly to viral sequence variation but also to the recognition of invariant viral epitopes that leads to waves of persistent T-cell immunity, which appears to associate with slower disease progression in the first year of infection.For more than a decade, there has been a wealth of evidence to show that human immunodeficiency virus (HIV)-specific cytotoxic T-cell (CTL) responses play a role in the control of HIV-1 and simian immunodeficiency virus (SIV) infection. In humans, the first appearance of CTL in primary HIV-1 infection coincides with the decline of peak viremia (7, 27), while depletion of CD8+ T cells in SIV infection resulted in elevated viremia (45). Additionally, polymorphisms in HLA class I-restricted CTL responses are associated with differential HIV-1 disease outcomes (25), and the emergence of viral escape within CTL epitopes during acute and chronic SIV or HIV-1 infection demonstrates the effectiveness of CD8+ T cells to exert viral selection pressure (21). Dissecting the specificity of HIV-1-specific CD8+ T-cell responses that associate with the control of viral replication during acute/early infection is thought to be critical for the design of vaccines and potential immunotherapeutic strategies aimed at stimulating these responses.Preferential targeting of class I-restricted CTL epitopes in Gag during early and chronic HIV-1 infection has been associated with lower viral loads (15, 25, 34, 48, 55), whereas Env- and Nef-specific CD8+ T-cell responses have been associated with higher viremia (15, 34, 55). Increasing evidence suggests that patterns of immunodominant HIV-specific CD8+ T-cell responses restricted by specific HLA alleles are major determinants of the viral set point (47). In addition, Goonetilleke et al. (17) have provided insight into the rapidity of early escape and the contribution of the first HIV-specific CD8+ T-cell responses to the transmitted/founder virus in control of acute viremia. The restriction of CTL epitopes by HLA-B*5801, for example, has also been associated with better viral control (16, 24). However, the temporal nature of epitope-specific responses that associate with viral control has not been explored. Recently, we found no association between the magnitude and breadth of gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses at a static 3-month time point with the viral set point at 12 months (22). The unpredictability of early T-cell responses with later viral control could be a result of HIV variability resulting in epitope escape from humoral and T-cell pressure (1, 8). For example, the impact of CTL pressure on shaping viral diversity at a human population level has been observed through HLA imprinting (6, 9, 44), and several studies have shown that certain selected escape mutations can compromise viral fitness (10, 29, 33, 39). Other studies have also demonstrated that the selection of escape variants in chronic HIV-1 and SIV infection can result in the loss of immune control and disease progression (3, 20). Assessing the nature of T-cell responses longitudinally and relating the patterns of contemporaneous viral recognition with viral diversity may represent alternative insights into factors associated with set point and disease progression.As the global AIDS epidemic continues to expand in sub-Saharan Africa, and South Africa in particular, the need to implement a preventive vaccine through the public health sector remains paramount. To date, several prototype antibody and T-cell-based candidate vaccine trials have been completed worldwide (37), and the recent failure of a phase IIb Ad5-Gag-Pol-Nef HIV-1 vaccine trial has emphasized the challenge of producing an effective T-cell-based vaccine against HIV. Data from the recent ALVAC and AIDSVAX (RV144) trials in Thailand have provided modest efficacy of a vaccine regimen in reducing HIV infection (42), and while the immune mechanisms for this are as yet unclear, these findings have created a platform for identifying immune responses that correlate with protection.The identification of the earliest targets of T cells during acute HIV-1 infection would be helpful in understanding the evolution of immunity when a host first encounters the virus and also would provide insight into the host-pathogen interplay when there is a rapidly changing target. We describe some of the earliest T-cell responses that occur during acute subtype C HIV-1 infection, how these change over time and associate with early disease progression, as well as the kinetics of these changes in relation to autologous viral escape. 相似文献
7.
Tulio de Oliveira Deenan Pillay Robert J. Gifford for the UK Collaborative Group on HIV Drug Resistance 《PloS one》2010,5(2)
Background
The global spread of HIV-1 has been accompanied by the emergence of genetically distinct viral strains. Over the past two decades subtype C viruses, which predominate in Southern and Eastern Africa, have spread rapidly throughout parts of South America. Phylogenetic studies indicate that subtype C viruses were introduced to South America through a single founder event that occurred in Southern Brazil. However, the external route via which subtype C viruses spread to the South American continent has remained unclear.Methodology/Principal Findings
We used automated genotyping to screen 8,309 HIV-1 subtype C pol gene sequences sampled within the UK for isolates genetically linked to the subtype C epidemic in South America. Maximum likelihood and Bayesian approaches were used to explore the phylogenetic relationships between 54 sequences identified in this screen, and a set of globally sampled subtype C reference sequences. Phylogenetic trees disclosed a robustly supported relationship between sequences from Brazil, the UK and East Africa. A monophyletic cluster comprised exclusively of sequences from the UK and Brazil was identified and dated to approximately the early 1980s using a Bayesian coalescent-based method. A sub-cluster of 27 sequences isolated from homosexual men of UK origin was also identified and dated to the early 1990s.Conclusions
Phylogenetic, demographic and temporal data support the conclusion that the UK was a crucial staging post in the spread of subtype C from East Africa to South America. This unexpected finding demonstrates the role of diffuse international networks in the global spread of HIV-1 infection, and the utility of globally sampled viral sequence data in revealing these networks. Additionally, we show that subtype C viruses are spreading within the UK amongst men who have sex with men. 相似文献8.
Morgane Rolland Jonathan M. Carlson Siriphan Manocheewa J. Victor Swain Erinn Lanxon-Cookson Wenjie Deng Christine M. Rousseau Dana N. Raugi Gerald H. Learn Brandon S. Maust Hoosen Coovadia Thumbi Ndung'u Philip J. R. Goulder Bruce D. Walker Christian Brander David E. Heckerman James I. Mullins 《PloS one》2010,5(9)
Background
Despite high potential for HIV-1 genetic variation, the emergence of some mutations is constrained by fitness costs, and may be associated with compensatory amino acid (AA) co-variation. To characterize the interplay between Cytotoxic T Lymphocyte (CTL)-mediated pressure and HIV-1 evolutionary pathways, we investigated AA co-variation in Gag sequences obtained from 449 South African individuals chronically infected with HIV-1 subtype C.Methodology/Principal Findings
Individuals with CTL responses biased toward Gag presented lower viral loads than individuals with under-represented Gag-specific CTL responses. Using methods that account for founder effects and HLA linkage disequilibrium, we identified 35 AA sites under Human Leukocyte Antigen (HLA)-restricted CTL selection pressure and 534 AA-to-AA interactions. Analysis of two-dimensional distances between co-varying residues revealed local stabilization mechanisms since 40% of associations involved neighboring residues. Key features of our co-variation analysis included sites with a high number of co-varying partners, such as HLA-associated sites, which had on average 55% more connections than other co-varying sites.Conclusions/Significance
Clusters of co-varying AA around HLA-associated sites (especially at typically conserved sites) suggested that cooperative interactions act to preserve the local structural stability and protein function when CTL escape mutations occur. These results expose HLA-imprinted HIV-1 polymorphisms and their interlinked mutational paths in Gag that are likely due to opposite selective pressures from host CTL-mediated responses and viral fitness constraints. 相似文献9.
10.
HIV-1 protease (PR) is an obligate homodimer which plays a pivotal role in the maturation and hence propagation of HIV. Although successful developments on PR active site inhibitors have been achieved, the major limiting factor has been the emergence of HIV drug-resistant strains. Disruption of the dimer interface serves as an alternative mechanism to inactivate the enzyme. The terminal residue, F99, was mutated to an alanine to investigate its contribution to dimer stability in the South African HIV-1 subtype C (C-SA) PR. The F99A PR and wild-type C-SA PR were overexpressed and purified. The activities of the PRs and their ability to bind an active site inhibitor, acetyl-pepstatin, were determined in vitro. The F99A PR showed no activity and the inability to bind to the inhibitor. Secondary and quaternary structure analysis were performed and revealed that the F99A PR is monomeric with reduced β-sheet content. The mutation of F99 to alanine disrupted the presumed ‘lock-and-key’ motif at the terminal dimer interface, in turn creating a cavity at the N- and C-terminal antiparallel β-sheet. These findings support the design of inhibitors targeting the C-terminus of the C-SA PR, centered on interactions with the bulky F99. 相似文献
11.
为了解柳州和南宁两市HIV-1亚型分布和耐药情况,在柳州和南宁招募HIV感染者和AIDS患者共304名,采集外周静脉血,从血浆中提取HIVRNA,扩增HIVpol基因并测序。将获得的序列进行系统进化树分析,结果表明柳州的HIV-1毒株中存在CRF01_AE和CRF07_BC两种亚型,其中CRF01_AE毒株占75.2%,CRF07_BC毒株占24.8%;南宁的HIV-1毒株中存在CRF01_AE、CRF08_BC、B亚型和C亚型共4种亚型,其中CRF01_AE和CRF08_BC仍是南宁最主要的亚型,CRF01_AE占85.8%,CRF08_BC占11.5%。根据所得的序列资料进行HIV-1耐药性分析,计算耐药率。计算结果表明,柳州未治疗和治疗研究对象的耐药率分别为3.3%和8.7%,南宁未治疗和治疗研究对象的耐药率分别为1.4%和27.5%。 相似文献
12.
13.
14.
Jaclyn K. Wright Zabrina L. Brumme Jonathan M. Carlson David Heckerman Carl M. Kadie Chanson J. Brumme Bingxia Wang Elena Losina Toshiyuki Miura Fundisiwe Chonco Mary van der Stok Zenele Mncube Karen Bishop Philip J. R. Goulder Bruce D. Walker Mark A. Brockman Thumbi Ndung'u 《Journal of virology》2010,84(20):10820-10831
The mechanisms underlying HIV-1 control by protective HLA class I alleles are not fully understood and could involve selection of escape mutations in functionally important Gag epitopes resulting in fitness costs. This study was undertaken to investigate, at the population level, the impact of HLA-mediated immune pressure in Gag on viral fitness and its influence on HIV-1 pathogenesis. Replication capacities of 406 recombinant viruses encoding plasma-derived Gag-protease from patients chronically infected with HIV-1 subtype C were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. Viral replication capacities varied significantly with respect to the specific HLA-B alleles expressed by the patient, and protective HLA-B alleles, most notably HLA-B*81, were associated with lower replication capacities. HLA-associated mutations at low-entropy sites, especially the HLA-B*81-associated 186S mutation in the TL9 epitope, were associated with lower replication capacities. Most mutations linked to alterations in replication capacity in the conserved p24 region decreased replication capacity, while most in the highly variable p17 region increased replication capacity. Replication capacity also correlated positively with baseline viral load and negatively with baseline CD4 count but did not correlate with the subsequent rate of CD4 decline. In conclusion, there is evidence that protective HLA alleles, in particular HLA-B*81, significantly influence Gag-protease function by driving sequence changes in Gag and that conserved regions of Gag should be included in a vaccine aiming to drive HIV-1 toward a less fit state. However, the long-term clinical benefit of immune-driven fitness costs is uncertain given the lack of correlation with longitudinal markers of disease progression.There is broad heterogeneity in the ability of HIV-infected individuals to control virus replication, ranging from elite controllers, who maintain undetectable viral loads without treatment, to rapid progressors, who progress to AIDS within 2 years of infection (9, 22, 32). Many interrelated factors, including host and viral genetic factors involved in antiviral immunity and the viral life cycle, may partially account for the differences in the course of disease progression (10, 11, 30, 41). The complex interplay between host genetic factors and viral factors is exemplified by human leukocyte antigen (HLA) class I-restricted cytotoxic T-lymphocyte (CTL) responses, which exert considerable immune pressure on the virus, resulting in escape mutations that affect the interaction of viral and host proteins, thereby influencing infection outcome.The exact mechanisms by which some HLA class I alleles, such as HLA-B*57 and HLA-B*27, are associated with slower progression to AIDS, while others, such as B*5802 and B*18, are associated with accelerated disease progression (6, 20, 42), are unclear. The magnitude and/or breadth of HLA-restricted CTL responses to the conserved Gag protein has been correlated inversely with disease progression or markers of disease progression in several studies (12, 21, 28, 31, 35, 43, 46), although there are some exceptions (4, 16, 37), while preferential targeting of the highly variable envelope protein (as occurs in HLA-B*5802-positive individuals) correlates with higher viral loads (21, 29). Protective HLA alleles restrict CTL responses that impose a strong selection pressure on a few specific Gag p24 epitopes, resulting in escape mutations (14) for which fitness costs have been demonstrated either through site-directed mutations introduced into a reference strain background (2, 8, 25, 38) or through in vivo reversion of these mutations after transmission to an HLA-mismatched individual (8, 24). Recent evidence suggests that Gag escape mutations with a fitness cost, particularly those in p24, are a significant determinant of disease progression: the transmitted number of HLA-B-associated polymorphisms in Gag was found to significantly impact the viral set point in recipients (although an associated fitness cost was not shown) (7, 15), and in a small number of infants, decreased fitness of the transmitted virus with HLA-B*5703/5801-selected mutations in Gag p24 epitopes resulted in slower disease progression (33, 39). Also, the number of reverting Gag mutations (thought to revert as a consequence of fitness costs) associated with individual HLA-B alleles was strongly correlated with the HLA-linked viral set point in chronically infected patients (26). A recent in vitro study showed that HLA-associated variation in Gag-protease, with resulting reduced replication capacity, may contribute to viral control in HIV-1 subtype B-infected elite controllers (27). Taken together, these studies suggest that CTL responses restricted by favorable HLA alleles select for escape mutations in conserved epitopes, particularly those in Gag, resulting in a fitness cost to HIV and therefore at least partly explaining the slower disease progression in individuals carrying these alleles.To date, many of the studies investigating the fitness cost of Gag escape mutations and their clinical relevance have concentrated on escape mutations associated with protective HLA alleles, have not assessed fitness consequences in the natural sequence background (in the presence of other escape and compensatory mutations), and/or have focused on a limited number of patients. Most importantly, the majority of studies have focused on HIV-1 subtype B. The present study is the first to use a large population-based approach and clinically derived Gag-protease sequences to investigate comprehensively the relationships between immune-driven sequence variation in Gag, viral replication capacity, and markers of disease progression in chronic infection with HIV-1 subtype C, the most predominant subtype in the epidemic. We assayed the replication capacity of recombinant viruses encoding patient Gag-protease in an HIV-1-inducible green fluorescent protein (GFP) reporter cell line and found associations between lower replication capacities, protective HLA alleles, protective HLA-associated mutations, lower baseline viral loads, and higher baseline CD4 counts. However, Gag-protease replication capacity did not correlate with the subsequent rate of CD4 decline. 相似文献
15.
Javier Guenaga Natalia de Val Karen Tran Yu Feng Karen Satchwell Andrew B. Ward Richard T. Wyatt 《PLoS pathogens》2015,11(1)
The structure of BG505 gp140 SOSIP, a soluble mimic of the native HIV-1 envelope glycoprotein (Env), marks the beginning of new era in Env structure-based immunogen design. Displaying a well-ordered quaternary structure, these subtype A-derived trimers display an excellent antigenic profile, discriminating recognition by broadly neutralizing antibodies (bNAbs) from non-broadly neutralizing antibodies (non-bNAbs), and provide a solid Env-based immunogenic platform starting point. Even with this important advance, obtaining homogeneous well-ordered soluble SOSIP trimers derived from other subtypes remains challenging. Here, we report the “rescue” of homogeneous well-ordered subtype B and C SOSIP trimers from a heterogeneous Env mixture using CD4 binding site-directed (CD4bs) non-bNAbs in a negative-selection purification process. These non-bNAbs recognize the primary receptor CD4bs only on disordered trimers but not on the native Env spike or well-ordered soluble trimers due to steric hindrance. Following negative selection to remove disordered oligomers, we demonstrated recovery of well-ordered, homogeneous trimers by electron microscopy (EM). We obtained 3D EM reconstructions of unliganded trimers, as well as in complex with sCD4, a panel of CD4bs-directed bNAbs, and the cleavage-dependent, trimer-specific bNAb, PGT151. Using bio-layer light interferometry (BLI) we demonstrated that the well-ordered trimers were efficiently recognized by bNAbs and poorly recognized by non-bNAbs, representing soluble mimics of the native viral spike. Biophysical characterization was consistent with the thermostability of a homogeneous species that could be further stabilized by specific bNAbs. This study revealed that Env trimers generate different frequencies of well-ordered versus disordered aberrant trimers even when they are genetically identical. By negatively selecting the native-like well-ordered trimers, we establish a new means to obtain soluble Env mimetics derived from subtypes B and C for expanded use as candidate vaccine immunogens. 相似文献
16.
Great strides have been made in understanding the evolutionary history of simian immunodeficiency virus (SIV) and the zoonoses that gave rise to HIV-1 and HIV-2. What remains unknown is how long these SIVs had been circulating in non-human primates before the transmissions to humans. Here, we use relaxed molecular clock dating techniques to estimate the time of most recent common ancestor for the SIVs infecting chimpanzees and sooty mangabeys, the reservoirs of HIV-1 and HIV-2, respectively. The date of the most recent common ancestor of SIV in chimpanzees is estimated to be 1492 (1266–1685), and the date in sooty mangabeys is estimated to be 1809 (1729–1875). Notably, we demonstrate that SIV sequences sampled from sooty mangabeys possess sufficient clock-like signal to calibrate a molecular clock; despite the differences in host biology and viral dynamics, the rate of evolution of SIV in sooty mangabeys is indistinguishable from that of its human counterpart, HIV-2. We also estimate the ages of the HIV-2 human-to-human transmissible lineages and provide the first age estimate for HIV-1 group N at 1963 (1948–1977). Comparisons between the SIV most recent common ancestor dates and those of the HIV lineages suggest a difference on the order of only hundreds of years. Our results suggest either that SIV is a surprisingly young lentiviral lineage or that SIV and, perhaps, HIV dating estimates are seriously compromised by unaccounted-for biases. 相似文献
17.
Park CS Kim MS Lee SD Kim SS Lee KM Lee CH 《Journal of microbiology (Seoul, Korea)》2006,44(6):655-659
Phylogenetic studies of nef, pol, and env gene sequences of HIV-1 isolated from Koreans suggested the presence of a Korean clade in which Korean sequences are clustered to the exclusion of foreign sequences. We attempted to identify and characterize the Korean clade using all vif gene sequences isolated from Koreans registered in the NCBI GenBank database (n = 233). Most (77 %) of the Korean isolates belonged to the Korean clade as a large subcluster in subtype B, designated the Korean clade subtype B (KCB). KCB sequences were relatively homogenous compared to Korean subtype B sequences that did not belong to the KCB (non-Korean clade subtype B; NKCB). Comparison of amino acid frequencies of KCB and NKCB sequences revealed several positions where the amino acid frequencies were significantly different. These amino acid residues were critical in separating KCB from NKCB or from foreign sequences, since substitution of these amino acids in KCB with the NKCB amino acids relocated the KCB sequences to NKCB, and vice versa. Further analyses of KCB will help us to understand the origin and evolutionary history of KCB. 相似文献
18.
目的构建含有HIV-1C亚型gp120基因重组腺病毒载体,并在293细胞中表达gp120蛋白。方法PCR扩增,获得HIV-1C亚型gp120片段,定向克隆人腺病毒转移载体pTrack-CMV,线性化后转化至含有腺病毒骨架载体pAd-easy-1的大肠埃希菌BJ5183,获得重组子prAd—gp120,PacI酶切纯化后转染293细胞,包装成复制缺陷型重组腺病毒vAd—gp120。结果经PCR、酶切及DNA测序,插入片段大小、方向正确,获得了具有感染力的vAd—gp120重组腺病毒;通过Western印迹检测,重组腺病毒在293细胞中表达出分子量为120kD的蛋白。结论成功构建了含有HIV-1C亚型gp120基因重组腺病毒载体,并获得该基因的表达。 相似文献
19.
A Lai FR Simonetti G Zehender A De Luca V Micheli P Meraviglia P Corsi P Bagnarelli P Almi A Zoncada S Paolucci A Gonnelli G Colao D Tacconi M Franzetti M Ciccozzi M Zazzi C Balotta 《PloS one》2012,7(8):e42223
About 40% of the Italian HIV-1 epidemic due to non-B variants is sustained by F1 clade, which circulates at high prevalence in South America and Eastern Europe. Aim of this study was to define clade F1 origin, population dynamics and epidemiological networks through phylogenetic approaches. We analyzed pol sequences of 343 patients carrying F1 subtype stored in the ARCA database from 1998 to 2009. Citizenship of patients was as follows: 72.6% Italians, 9.3% South Americans and 7.3% Rumanians. Heterosexuals, Homo-bisexuals, Intravenous Drug Users accounted for 58.1%, 24.0% and 8.8% of patients, respectively. Phylogenetic analysis indicated that 70% of sequences clustered in 27 transmission networks. Two distinct groups were identified; the first clade, encompassing 56 sequences, included all Rumanian patients. The second group involved the remaining clusters and included 10 South American Homo-bisexuals in 9 distinct clusters. Heterosexual modality of infection was significantly associated with the probability to be detected in transmission networks. Heterosexuals were prevalent either among Italians (67.2%) or Rumanians (50%); by contrast, Homo-bisexuals accounted for 71.4% of South Americans. Among patients with resistant strains the proportion of clustering sequences was 57.1%, involving 14 clusters (51.8%). Resistance in clusters tended to be higher in South Americans (28.6%) compared to Italian (17.7%) and Rumanian patients (14.3%). A striking proportion of epidemiological networks could be identified in heterosexuals carrying F1 subtype residing in Italy. Italian Heterosexual males predominated within epidemiological clusters while foreign patients were mainly Heterosexual Rumanians, both males and females, and South American Homo-bisexuals. Tree topology suggested that F1 variant from South America gave rise to the Italian F1 epidemic through multiple introduction events. The contact tracing also revealed an unexpected burden of resistance in epidemiological clusters underlying the need of public interventions to limit the spread of non-B subtypes and transmitted drug resistance. 相似文献
20.
从河南和陕西既往献血感染的109份HIV-1阳性血浆样本中提取病毒RNA,扩增并测定其gag全长基因序列。按照采样时间对序列进行分组并利用Entropy软件分析不同组别的氨基酸序列差异。结果表明,2004年、2005年的序列与2002年的序列比较,分别存在8个和13个氨基酸组成有统计学意义的位点,其中有5个位点在两组比较中同时出现。存在差异的16个氨基酸位点中,10个位点的氨基酸分布呈现多态性增加的趋势,其中8个位点被我国人群主要HLA递呈的CTL表位覆盖;6个位点的氨基酸分布呈现多态性减少的趋势,这些位点均位于Gag蛋白重要的功能区内。 相似文献