首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The RTR (R ecQ/Top 3/Rmi 1) complex has been elucidated as essential for ensuring genome stability in eukaryotes. Fundamental for the dissolution of Holliday junction (HJ)-like recombination intermediates, the factors have been shown to play further, partly distinct roles in DNA repair and homologous recombination. Across all kingdoms, disruption of this complex results in characteristic phenotypes including hyper-recombination and sensitivity to genotoxins. The type IA topoisomerase TOP3α has been shown as essential for viability in various animals. In contrast, in the model plant species Arabidopsis, the top3α mutant is viable. rmi1 mutants are deficient in the repair of DNA damage. Moreover, as opposed to other eukaryotes, TOP3α and RMI1 were found to be indispensable for proper meiotic progression, with mutants showing severe meiotic defects and sterility. We now established mutants of both TOP3α and RMI1 in tomato using CRISPR/Cas technology. Surprisingly, we found phenotypes that differed dramatically from those of Arabidopsis: the top3α mutants proved to be embryo-lethal, implying an essential role of the topoisomerase in tomato. In contrast, no defect in somatic DNA repair or meiosis was detectable for rmi1 mutants in tomato. This points to a differentiation of function of RTR complex partners between plant species. Our results indicate that there are relevant differences in the roles of basic factors involved in DNA repair and meiosis within dicotyledons, and thus should be taken as a note of caution when generalizing knowledge regarding basic biological processes obtained in the model plant Arabidopsis for the entire plant kingdom.  相似文献   

2.
Topoisomerases are enzymes with crucial functions in DNA metabolism. They are ubiquitously present in prokaryotes and eukaryotes and modify the steady-state level of DNA supercoiling. Biochemical analyses indicate that Topoisomerase 3α (TOP3α) functions together with a RecQ DNA helicase and a third partner, RMI1/BLAP75, in the resolution step of homologous recombination in a process called Holliday Junction dissolution in eukaryotes. Apart from that, little is known about the role of TOP3α in higher eukaryotes, as knockout mutants show early lethality or strong developmental defects. Using a hypomorphic insertion mutant of Arabidopsis thaliana (top3α-2), which is viable but completely sterile, we were able to define three different functions of the protein in mitosis and meiosis. The top3α-2 line exhibits fragmented chromosomes during mitosis and sensitivity to camptothecin, suggesting an important role in chromosome segregation partly overlapping with that of type IB topoisomerases. Furthermore, AtTOP3α, together with AtRECQ4A and AtRMI1, is involved in the suppression of crossover recombination in somatic cells as well as DNA repair in both mammals and A. thaliana. Surprisingly, AtTOP3α is also essential for meiosis. The phenotype of chromosome fragmentation, bridges, and telophase I arrest can be suppressed by AtSPO11 and AtRAD51 mutations, indicating that the protein is required for the resolution of recombination intermediates. As Atrmi1 mutants have a similar meiotic phenotype to Attop3α mutants, both proteins seem to be involved in a mechanism safeguarding the entangling of homologous chromosomes during meiosis. The requirement of AtTOP3α and AtRMI1 in a late step of meiotic recombination strongly hints at the possibility that the dissolution of double Holliday Junctions via a hemicatenane intermediate is indeed an indispensable step of meiotic recombination.  相似文献   

3.
Homologous recombination is the predominant DNA repair pathway used in the gonad. Of the excess DNA double-strand breaks formed in meiosis, only a subset matures into crossovers, with the remainder repaired as non-crossovers. The conserved BTR complex (comprising Bloom helicase, topoisomerase 3 and RMI1/2 scaffold proteins) acts at multiple steps during recombination to dismantle joint DNA molecules, thereby mediating the non-crossover outcome and chromosome integrity. Furthermore, the complex displays a role at the crossover site that is less well understood. Besides catalytic and TOPRIM domains, topoisomerase 3 enzymes contain a variable number of carboxy terminal zinc finger (ZnF) domains. Here, we studied the Caenorhabditis elegans mutant, in which the single ZnF domain is deleted. In contrast to the gene disruption allele, the top-3-ZnF mutant is viable, with no replication defects; the allele appears to be a hypomorph. The TOP-3-ZnF protein is recruited into foci but the mutant has increased numbers of crossovers along its chromosomes, with minor defects in repressing heterologous recombination, and a marked delay in the maturation/processing of recombination intermediates after loading of the RAD-51 recombinase. The ZnF domain cooperates with the RMI1 homolog RMH-2 to stabilize association of the BTR complex with recombination intermediates and to prevent recombination between heterologous DNA sequences.  相似文献   

4.
Homologous recombination is a high-fidelity repair pathway for DNA double-strand breaks employed during both mitotic and meiotic cell divisions. Such repair can lead to genetic exchange, originating from crossover (CO) generation. In mitosis, COs are suppressed to prevent sister chromatid exchange. Here, the BTR complex, consisting of the Bloom helicase (HIM-6 in worms), topoisomerase 3 (TOP-3), and the RMI1 (RMH-1 and RMH-2) and RMI2 scaffolding proteins, is essential for dismantling joint DNA molecules to form non-crossovers (NCOs) via decatenation. In contrast, in meiosis COs are essential for accurate chromosome segregation and the BTR complex plays distinct roles in CO and NCO generation at different steps in meiotic recombination. RMI2 stabilizes the RMI1 scaffolding protein, and lack of RMI2 in mitosis leads to elevated sister chromatid exchange, as observed upon RMI1 knockdown. However, much less is known about the involvement of RMI2 in meiotic recombination. So far, RMI2 homologs have been found in vertebrates and plants, but not in lower organisms such as Drosophila, yeast, or worms. We report the identification of the Caenorhabditis elegans functional homolog of RMI2, which we named RMIF-2. The protein shows a dynamic localization pattern to recombination foci during meiotic prophase I and concentration into recombination foci is mutually dependent on other BTR complex proteins. Comparative analysis of the rmif-2 and rmh-1 phenotypes revealed numerous commonalities, including in regulating CO formation and directing COs toward chromosome arms. Surprisingly, the prevalence of heterologous recombination was several fold lower in the rmif-2 mutant, suggesting that RMIF-2 may be dispensable or less strictly required for some BTR complex-mediated activities during meiosis.  相似文献   

5.
The endonuclease MUS81 has been shown in a variety of organisms to be involved in DNA repair in mitotic and meiotic cells. Homologues of the MUS81 gene exist in the genomes of all eukaryotes, pointing to a conserved role of the protein. However, the biological role of MUS81 varies between different eukaryotes. For example, while loss of the gene results in strongly impaired fertility in Saccharomyces cerevisiae and nearly complete sterility in Schizosaccharomyces pombe, it is not essential for meiosis in mammals. We identified a functional homologue (AtMUS81/At4g30870) in the genome of Arabidopsis thaliana and isolated a full-length cDNA of this gene. Analysing two independent T-DNA insertion lines of AtMUS81, we found that they are sensitive to the mutagens MMS and MMC. Both mutants have a deficiency in homologous recombination in somatic cells but only after induction by genotoxic stress. In contrast to yeast, no meiotic defect of AtMUS81 mutants was detectable and the mutants are viable. Crosses with a hyperrecombinogenic mutant of the AtRecQ4A helicase resulted in synthetic lethality in the double mutant. Thus, the nuclease AtMUS81 and the helicase AtRecQ4A seem to be involved in two alternative pathways of resolution of replicative DNA structures in somatic cells.  相似文献   

6.
DNA helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms. As homologous recombination occurs in somatic and meiotic cells, the same proteins may participate in both processes, albeit not necessarily with identical functions. DNA helicases involved in genome stability and meiotic recombination are the focus of this review. The role of these enzymes and their characterized interaction partners in plants will be summarized. Although most factors are conserved in eukaryotes, plant-specific features are becoming apparent. In the RecQ helicase family, Arabidopsis thaliana RECQ4A has been shown before to be the functional homologue of the well-researched baker's yeast Sgs1 and human BLM proteins. It was surprising to find that its interaction partners AtRMI1 and AtTOP3α are absolutely essential for meiotic recombination in plants, where they are central factors of a formerly underappreciated dissolution step of recombination intermediates. In the expanding group of anti-recombinases, future analysis of plant helicases is especially promising. While no FBH1 homologue is present, the Arabidopsis genome contains homologues of both SRS2 and RTEL1. Yeast and mammals, on the other hand. only possess homologues of either one or the other of these helicases. Plants also contain several other classes of helicases that are known from other organisms to be involved in the preservation of genome stability: FANCM is conserved with parts of the human Fanconi anaemia proteins, as are homologues of the Swi2/Snf2 family and of PIF1.  相似文献   

7.
8.
An important quality control mechanism eliminates meiocytes that have experienced recombination failure during meiosis. The culling of defective oocytes in Caenorhabditis elegans meiosis resembles late oocyte elimination in female mammals. Here we show that topoisomerase 3 depletion generates DNA lesions in both germline mitotic and meiotic compartments that are less capable of triggering p53 (cep-1)–dependent apoptosis, despite the activation of DNA damage and apoptosis signaling. Elimination of nonhomologous, alternative end joining and single strand annealing repair factors (CKU-70, CKU-80, POLQ-1, and XPF-1) can alleviate the apoptosis block. Remarkably, the ability of single mutants in the other members of the Bloom helicase-topoisomerase-RMI1 complex to elicit apoptosis is not compromised, and depletion of Bloom helicase in topoisomerase 3 mutants restores an effective apoptotic response. Therefore, uncontrolled Bloom helicase activity seems to direct DNA repair toward normally not used repair pathways, and this counteracts efficient apoptosis. This implicates an as-yet undescribed requirement for topoisomerase 3 in mounting an effective apoptotic response to ensure germ cell quality control.  相似文献   

9.
10.
Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known as “double Holliday junction dissolution.” This reaction requires the cooperative action of a so-called “dissolvasome” comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions.For decades, homologous recombination (HR) was defined as a mechanism for the production of new allelic combinations during meiosis because it can generate so-called crossing-over (see Mehta and Haber 2014). Crossovers are likely generated by the asymmetric cleavage of a key intermediate in HR, the dHJ, by the action of structure-selective endonucleases called “resolvases” (Fig. 1A) (see Wyatt and West 2014). In addition to its essential function during meiosis, HR has proven to be a crucial DNA repair pathway in mitotic cells. Precisely because it has the potential to generate crossing-over, the resolution of dHJ by resolvases affords a high risk of genomic instability in these circumstances. Indeed, when HR is engaged between two homologous chromosomes or two homeologous sequences, dHJ resolution could lead, respectively, to loss of heterozygosity or gross chromosomal rearrangements. Thus, an alternative mechanism allowing dHJ processing without crossing-over would appear essential when HR is used for DNA repair. Such a mechanism, termed dHJ dissolution, is thought to be a major route for dissipation of dHJs arising from HR repair (LaRocque et al. 2011; Krejci et al. 2012). During dHJ dissolution, the two HJs are branch migrated toward one another until they form a hemicatenated intermediate that can be decatenated by a topoisomerase (Fig. 1B). This sophisticated reaction is performed by the so-called “dissolvasome” complex composed of a specific RecQ helicase (BLM in humans/Sgs1 in budding yeast) and a type IA topoisomerase known as topoisomerase III (Fig. 2; for general reviews about RecQ helicases and topoisomerases, see Champoux 2001; Wang 2002; Bachrati and Hickson 2003; Viard and de la Tour 2007; Chu and Hickson 2009; Vindigni and Hickson 2009.Open in a separate windowFigure 1.Double Holliday junction processing pathways. (A) During HJ resolution, each HJ of a dHJ is cleaved by a structure-selective endonuclease (resolvase). Depending on the combination of cleavage orientations, which can be asymmetric or symmetric, this process can generate both crossover and noncrossover products. In contrast, during dissolution (B), each strand engaged in the dHJ is reassociated with its original complementary strand, preventing exchange of genetic material between the two homologous sequences (and hence generating exclusively noncrossover products). DHJ dissolution (B) is initiated by migration of the HJs toward one another. The fusion/collapse of the two HJs results in a hemicatenated intermediate. Decatenation of this intermediate regenerates the original DNA species present before the initiation of HR.Open in a separate windowFigure 2.Domain organization of RecQ helicases, topoisomerases IA, and RMI proteins. (A) Most of the RecQ helicase members share a superfamily 2 helicase domain (SF2), a RecQ conserved domain (RQC), and a helicase and RNase D carboxy-terminal domain (HRDC). Besides this “RecQ core” domain, some RecQ helicases contain amino-terminal and carboxy-terminal extensions that vary in size, sequence, and functionality (e.g., SLD2 homology domain in RECQ4, and a signature motif in the carboxy-terminal domain of RECQ5). The hatched boxes denote partially degenerate RQC domains. BLM/Sgs1 helicases share a common domain organization, including an amino-terminal extension that includes domains for interaction with both TopoIII/RMI1 (TR) and replication protein A (RPA), in addition to a region that has been proposed to be required for DNA strand exchange (SE) activity. (B) All type IA topoisomerases contain a conserved catalytic domain (topoisomerase IA). Some topoisomerase IA enzymes also exhibit a carboxy-terminal extension, frequently composed of zinc finger motifs (black boxes), which is believed to mediate protein–DNA and protein–protein interactions. The contribution of the carboxy-terminal extension to dissolution is unknown. The regions interacting with other components of the dissolvasome are unknown. (C) In RMI1 proteins, only the DUF1676 and the OB-fold domain 1 (OB1) are conserved from yeast to human. The OB1 associates with both BLM/Sgs1 and topoisomerase III (BT/ST). In addition, human RMI1 exhibits a carboxy-terminal extension, composed of a middle region, which mediates RPA binding, and a second OB fold (OB2), which is able to associate with RMI2. RMI2 is also an OB-fold protein (OB3) that stably associates with the dissolvasome in human cells. In total, therefore, the human RMI1/2 complex contains three OB folds.In this review, we first take a historical look at the experimental evidence that led some groups to formulate the proposal that a reaction akin to dissolution must exist, and which then led Wu and Hickson (2003) to confirm its existence by reconstitution of the dissolution reaction in vitro using purified proteins. Following that, we will review the individual and combined roles of the components of what we will term the dHJ dissolvasome. Although many mechanistic aspects of dHJ dissolution remain obscure, several biochemical studies have provided a general understanding of this conceptually simple, but mechanistically complex, reaction.  相似文献   

11.
Recent studies in Saccharomyces cerevisiae have provided new insights in our understanding of the molecular mechanisms of meiotic recombination. Meiosis-specific DNA double-strand breaks have been detected and have been shown to be the lesions that initiate recombination events. These are located mostly in promoter regions where the chromatin is in an open configuration, and cluster in domains along the chromosome. They are likely to be made by a topoisomerase II-like protein encoded by the SPO11 gene. Several DNA intermediates in the meiotic double strand-break repair pathway have been characterised and several multi-protein complexes have been identified and shown to be involved at different steps in the repair pathway. The conservation of these protein complexes in higher eukaryotes suggests that the meiotic recombination mechanism could be conserved. With the application of the well characterised genetical, molecular, cytological and biochemical techniques and the recently developed technology for genomic studies (biochips), we can expect a rapid increase in our comprehension of the meiotic recombination process.  相似文献   

12.
13.
Homologous recombination (HR) is essential for accurate genome duplication and maintenance of genome stability. In eukaryotes, chromosomal double strand breaks (DSBs) are central to HR during specialized developmental programs of meiosis and antigen receptor gene rearrangements, and form at unusual DNA structures and stalled replication forks. DSBs also result from exposure to ionizing radiation, reactive oxygen species, some anti-cancer agents, or inhibitors of topoisomerase II. Literature predicts that repair of such breaks normally will occur by non-homologous end-joining (in G1), intrachromosomal HR (all phases), or sister chromatid HR (in S/G2). However, no in vivo model is in place to directly determine the potential for DSB repair in somatic cells of mammals to occur by HR between repeated sequences on heterologs (i.e., interchromosomal HR). To test this, we developed a mouse model with three transgenes—two nonfunctional green fluorescent protein (GFP) transgenes each containing a recognition site for the I-SceI endonuclease, and a tetracycline-inducible I-SceI endonuclease transgene. If interchromosomal HR can be utilized for DSB repair in somatic cells, then I-SceI expression and induction of DSBs within the GFP reporters may result in a functional GFP+ gene. Strikingly, GFP+ recombinant cells were observed in multiple organs with highest numbers in thymus, kidney, and lung. Additionally, bone marrow cultures demonstrated interchromosomal HR within multiple hematopoietic subpopulations including multi-lineage colony forming unit–granulocyte-erythrocyte-monocyte-megakaryocte (CFU-GEMM) colonies. This is a direct demonstration that somatic cells in vivo search genome-wide for homologous sequences suitable for DSB repair, and this type of repair can occur within early developmental populations capable of multi-lineage differentiation.  相似文献   

14.
Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as an autoinhibitory domain or molecular brake, clamping the single-stranded DNA extruded through the central pore of the helicase structure to limit the helicase activity of the enzyme. This provides an elegant mechanism to tune the processivity of the enzyme to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, and this activity is only partially inhibited when the DNA is pre-bound with abundant DNA-binding proteins RPA or Alba1, whereas pre-binding with the recombinase RadA has no effect on activity. These data suggest that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates.  相似文献   

15.
Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer.  相似文献   

16.
In humans, mutations in the DNA helicase Regulator of Telomere Elongation Helicase1 (RTEL1) lead to Hoyeraal-Hreidarsson syndrome, a severe, multisystem disorder. Here, we demonstrate that the RTEL1 homolog in Arabidopsis thaliana plays multiple roles in preserving genome stability. RTEL1 suppresses homologous recombination in a pathway parallel to that of the DNA translocase FANCM. Cytological analyses of root meristems indicate that RTEL1 is involved in processing DNA replication intermediates independently from FANCM and the nuclease MUS81. Moreover, RTEL1 is involved in interstrand and intrastrand DNA cross-link repair independently from FANCM and (in intrastrand cross-link repair) parallel to MUS81. RTEL1 contributes to telomere homeostasis; the concurrent loss of RTEL1 and the telomerase TERT leads to rapid, severe telomere shortening, which occurs much more rapidly than it does in the single-mutant line tert, resulting in developmental arrest after four generations. The double mutant rtel1-1 recq4A-4 exhibits massive growth defects, indicating that this RecQ family helicase, which is also involved in the suppression of homologous recombination and the repair of DNA lesions, can partially replace RTEL1 in the processing of DNA intermediates. The requirement for RTEL1 in multiple pathways to preserve genome stability in plants can be explained by its putative role in the destabilization of DNA loop structures, such as D-loops and T-loops.  相似文献   

17.
18.
Bloom’s syndrome (BS) is an autosomal recessive disorder characterized by growth retardation, cancer predisposition, and sterility. BS mutated (Blm), the gene mutated in BS patients, is one of five mammalian RecQ helicases. Although BLM has been shown to promote genome stability by assisting in the repair of DNA structures that arise during homologous recombination in somatic cells, less is known about its role in meiotic recombination primarily because of the embryonic lethality associated with Blm deletion. However, the localization of BLM protein on meiotic chromosomes together with evidence from yeast and other organisms implicates a role for BLM helicase in meiotic recombination events, prompting us to explore the meiotic phenotype of mice bearing a conditional mutant allele of Blm. In this study, we show that BLM deficiency does not affect entry into prophase I but causes severe defects in meiotic progression. This is exemplified by improper pairing and synapsis of homologous chromosomes and altered processing of recombination intermediates, resulting in increased chiasmata. Our data provide the first analysis of BLM function in mammalian meiosis and strongly argue that BLM is involved in proper pairing, synapsis, and segregation of homologous chromosomes; however, it is dispensable for the accumulation of recombination intermediates.  相似文献   

19.
DNA polymerases play a central role during homologous recombination (HR), but the identity of the enzyme(s) implicated remains elusive. The pol3-ct allele of the gene encoding the catalytic subunit of DNA polymerase δ (Polδ) has highlighted a role for this polymerase in meiotic HR. We now address the ubiquitous role of Polδ during HR in somatic cells. We find that pol3-ct affects gene conversion tract length during mitotic recombination whether the event is initiated by single-strand gaps following UV irradiation or by site-specific double-strand breaks. We show that the pol3-ct effects on gene conversion are completely independent of mismatch repair, indicating that shorter gene conversion tracts in pol3-ct correspond to shorter extensions of primed DNA synthesis. Interestingly, we find that shorter repair tracts do not favor synthesis-dependent strand annealing at the expense of double-strand-break repair. Finally, we show that the DNA polymerases that have been previously suspected to mediate HR repair synthesis (Pol and Polη) do not affect gene conversion during induced HR, including in the pol3-ct background. Our results argue strongly for the preferential recruitment of Polδ during HR.  相似文献   

20.
In meiosis, programmed DNA breaks repaired by homologous recombination (HR) can be processed into inter-homolog crossovers that promote the accurate segregation of chromosomes. In general, more programmed DNA double-strand breaks (DSBs) are formed than the number of inter-homolog crossovers, and the excess DSBs must be repaired to maintain genomic stability. Sister-chromatid (inter-sister) recombination is postulated to be important for the completion of meiotic DSB repair. However, this hypothesis is difficult to test because of limited experimental means to disrupt inter-sister and not inter-homolog HR in meiosis. We find that the conserved Structural Maintenance of Chromosomes (SMC) 5 and 6 proteins in Caenorhabditis elegans are required for the successful completion of meiotic homologous recombination repair, yet they appeared to be dispensable for accurate chromosome segregation in meiosis. Mutations in the smc-5 and smc-6 genes induced chromosome fragments and dismorphology. Chromosome fragments associated with HR defects have only been reported in mutants, which have disrupted inter-homolog crossover. Surprisingly, the smc-5 and smc-6 mutations did not disrupt the formation of chiasmata, the cytologically visible linkages between homologous chromosomes formed from meiotic inter-homolog crossovers. The mutant fragmentation defect appeared to be preferentially enhanced by the disruptions of inter-homolog recombination but not by the disruptions of inter-sister recombination. Based on these findings, we propose that the C. elegans SMC-5/6 proteins are required in meiosis for the processing of homolog-independent, presumably sister-chromatid-mediated, recombination repair. Together, these results demonstrate that the successful completion of homolog-independent recombination is crucial for germ cell genomic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号