首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human urotensin-II (hU-II) is a cyclic peptide that plays a central role in cardiovascular homeostasis and is considered to be the most potent mammalian vasoconstrictor identified to date. It is a natural ligand of the human urotensin-II (hUT-II) receptor, a member of the family of rhodopsin-like G-protein-coupled receptors. To understand the molecular interactions of hU-II and certain antagonists with the hUT-II receptor, a model of the hUT-II receptor in an active conformation with all its connecting loops was constructed by homology modeling. The initial model was placed in a pre-equilibrated lipid bilayer and re-equilibrated by several procedures of energy minimization and molecular dynamics simulations. Docking studies were performed for hU-II and for a series of nonpeptide hUT-II receptor antagonists in the active site of the modeled receptor structure. Results of the hU-II docking study are in agreement with our previous work and with experimental data showing the contribution of the extracellular loops II and III to ligand recognition. The docking of hU-II nonpeptide antagonists allows identification of key molecular interactions and confirms a previously reported hU-II antagonist pharmacophore model. The results of the present studies will be used in structure-based drug design for developing novel antagonists for the hUT-II receptor.  相似文献   

2.
Abstract: The present investigation examined the effect of in vivo antagonism of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor by 2,3-dihydro-6-nitro-7-sulfamoylbenzo( f )quinoxaline (NBQX) on local cerebral glucose utilization (LCGU) using the quantitative autoradiographic Pdeoxy[14C]-glucose method in conscious rats. NBQX, at doses of 10, 30, and 60 mg/kg i.p. or three injections of 30 mg/kg i.p., did not increase LCGU in limbic areas such as the primary olfactory cortex. olfactory tubercle, hippocampus, dentate gyrus, posterior cingulate cortex, mamillary body, caudate nucleus, anterior thalamic nucleus, and nucleus accumbens. NBQX, at doses of 260 mg/kg i.p., decreased LCGU in these brain areas. These data demonstrate that in vivo antagonism of the AMPA receptors by NBQX produces a pattern of alterations in metabolic activity, different from that produced by noncompetitive antagonists of the N-methyl-D-aSpartate (NMDA) receptor, e.g., phencyclidine and MK-801. Combined with a lack of "phencyclidine-like" behavior produced by NBQX. these data suggest that antagonism of the AMPA receptor represents a novel mechanism to block excitatory amino acids in the CNS, which may be devoid of unwanted behavioral side effects associated with noncompetitive antagonism of the NMDA receptor.  相似文献   

3.
Patny A  Desai PV  Avery MA 《Proteins》2006,65(4):824-842
Angiotensin II type 1 (AT(1)) receptor belongs to the super-family of G-protein-coupled receptors, and antagonists of the AT(1) receptor are effectively used in the treatment of hypertension. To understand the molecular interactions of these antagonists, such as losartan and telmisartan, with the AT(1) receptor, a homology model of the human AT(1) (hAT(1)) receptor with all connecting loops was constructed from the 2.6 A resolution crystal structure (PDB i.d., 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to a stepwise ligand-supported model refinement. This protocol involved initial docking of non-peptide AT(1) antagonists in the putative binding site, followed by several rounds of iterative energy minimizations and molecular dynamics simulations. The final model was validated based on its correlation with several structure-activity relationships and site-directed mutagenesis data. The final model was also found to be in agreement with a previously reported AT(1) antagonist pharmacophore model. Docking studies were performed for a series of non-peptide AT(1) receptor antagonists in the active site of the final hAT(1) receptor model. The docking was able to identify key molecular interactions for all the AT(1) antagonists studied. Reasonable correlation was observed between the interaction energy values and the corresponding binding affinities of these ligands, providing further validation for the model. In addition, an extensive unrestrained molecular dynamics simulation showed that the docking-derived bound pose of telmisartan is energetically stable. Knowledge gained from the present studies can be used in structure-based drug design for developing novel ligands for the AT(1) receptor.  相似文献   

4.
In spite of various research investigations towards anti-depressant drug discovery program, no one drug has not yet launched last 20 years. Corticotropin-releasing factor-1 (CRF-1) is one of the most validated targets for the development of antagonists against depression, anxiety and post-traumatic stress disorders. Various research studies suggest that pyrazinone based CRF-1 receptor antagonists were found to be highly potent and efficacious. In this research investigation, we identified the pharmacophore and binding pattern through 2D and 3D-QSAR and molecular docking respectively. Molecular dynamics studies were also performed to explore the binding pattern recognition. We establish the relationship between activity and pharmacophoric features to design new potent compounds. The best 2D-QSAR model was generated through multiple linear regression method with r2 value of 0.97 and q2 value of 0.89. Also 3D-QSAR model was obtained through k-nearest neighbor molecular field analysis method with q2 value of 0.52 and q2_se value of 0.36. Molecular docking and binding energy were also evaluated to define binding patterns and pharmacophoric groups, including (i) hydrogen bond with residue Asp284, Glu305 and (ii) π–π stacking with residue Trp9. Compound 11i has the highest binding affinity compared to reference compounds, so this compound could be a potent drug for stress related disorders. Most of the compounds, including reference compounds were found within acceptable range of physicochemical parameters. These observations could be provided the leads for the design and optimization of novel CRF-1 receptor antagonists.

Communicated by Ramaswamy H. Sarma  相似文献   


5.
A novel series of quinoxaline derivatives, as Multi-Target-Directed Ligands (MTDLs) for AD treatment, were designed by lending the core structural elements required for H(3)R antagonists and hybridizing BACE 1 inhibitor 1 with AChE inhibitor BYYT-25. A virtual database consisting of quinoxaline derivatives was first screened on a pharmacophore model of BACE 1 inhibitors, and then filtered by a molecular docking model of AChE. Seventeen quinoxaline derivatives with high score values were picked out, synthesized and evaluated for their biological activities. Compound 11a, the most effective MTDL, showed the potent activity to H(3)R/AChE/BACE 1 (H(3)R antagonism, IC(50)=280.0 ± 98.0 nM; H(3)R inverse agonism, IC(50)=189.3 ± 95.7 nM; AChE, IC(50)=483 ± 5 nM; BACE 1, 46.64±2.55% inhibitory rate at 20 μM) and high selectivity over H(1)R/H(2)R/H(4)R. Furthermore, the protein binding patterns between 11a and AChE/BACE 1 showed that it makes several essential interactions with the enzymes.  相似文献   

6.
Non-competitive ligands of kainate receptors have focused significant attention as medicinal compounds because they seem to be better tolerated than competitive antagonists and uncompetitive blocker of these receptors. Here we present structural studies (X-ray structure determination, NMR and MS spectra) of novel indole-derived non-competitive antagonists of GluK1/GluK2 receptors, homology models of GluK1 and GluK2 receptors based on novel AMPA receptor template as well as molecular docking of ligands to their molecular targets. We find that the allosteric site is in the receptor transduction domain, in one receptor subunit, not between the two subunits as it was indicated by our earlier studies.  相似文献   

7.
Several androgen receptor (AR) antagonists are clinically prescribed to treat prostate cancer. Unfortunately, many patients become resistant to the existing AR antagonists. To overcome this, a novel AR antagonist candidate called DIMN was discovered by our research group in 2013. In order to develop compounds with improved potency, we designed novel DIMN derivatives based on a docking study and substituted carbons with heteroatom moieties. Encouraging in vitro results for compounds 1b, 1c, 1e, 3c, and 4c proved that the new design was successful. Among the newly synthesized compounds, 1e exhibited the strongest inhibitory effect on LNCaP cell growth (IC50 = 0.35 μM) and also acted as a competitive AR antagonist with selectivity over the estrogen receptor (ER) and the glucocorticoid receptor (GR). A docking study of compound 1e fully supported these biological results. Compound 1e is considered to be a novel, potent and AR-specific antagonist for treating prostate cancer. Thus, our study successfully applied molecular modeling and bioisosteric replacement for hit optimization. The methods here provide a guide for future development of drug candidates through structure-based drug discovery and chemical modifications.  相似文献   

8.
Selective A(2B) receptor antagonists and agonists may play a role in important pathologies such as gastrointestinal, neurological (i.e., Alzheimer disease and dementia) and hypersensitive disorders (i.e., asthma), diabetes, atherosclerosis, restenosis and cancer. Hence, it is regarded as a good target for the development of clinically useful agents. In this study, the effects of lipid bilayer, N-acetylglucosamine and S-palmitoyl on the dynamic behavior of A(2B)AR model is explored. Homology modeling, molecular docking and molecular dynamics simulations were performed to explore structural features of A(2B)AR in the presence of lipid bilayer. Twenty ns MD simulation was performed on the constructed model inserted in a hydrated lipid bilayer to examine stability of the best model. OSIP339391 as the most potent antagonist was docked in the active site of the model. Another MD simulation was performed on the ligand-protein complex to explore effects of the bilayer on this complex. A similar procedure was performed for the modified protein with N-acetylglucosamine and S-palmitoyl moieties in its structure. Phe173 and Glu174 located in EL2 were determined to be involved in ligand-receptor interactions through π-π stacking and hydrogen bonding. Asn254 was crucial to form hydrogen-bonding. The reliability of the model was assessed through docking using both commercial and synthetic antagonists and an r(2) of 0.70 was achieved. Our results show that molecular dynamics simulations of palmitoylated/glycosylated, membrane-integrated human A(2B)AR in its native environment is a possible approach and this model can be used for designing potent and selective A(2B)AR antagonists.  相似文献   

9.
Glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system, and excessive stimulation of these receptors is involved in a variety of neurological disorders and neuronal damage from stroke. The development of new subtype-specific antagonists would be of considerable therapeutic interest. Natural products can provide important new lead compounds for drug discovery. The only natural product known to inhibit glutamate receptors competitively is (−)-kaitocephalin, which was isolated from the fungus Eupenicillium shearii and found to protect CNS neurons from excitotoxicity. Previous work has shown that it is a potent antagonist of some subtypes of glutamate receptors (AMPA and NMDA, but not kainate). The structure of kaitocephalin bound to the ligand binding domain of the AMPA receptor subtype, GluA2, is reported here. The structure suggests how kaitocephalin can be used as a scaffold to develop more selective and high affinity antagonists for glutamate receptors.  相似文献   

10.
In the present study, we have used an approach combining protein structure modeling, molecular dynamics (MD) simulation, automated docking, and 3D QSAR analyses to investigate the detailed interactions of CCR5 with their antagonists. Homology modeling and MD simulation were used to build the 3D model of CCR5 receptor based on the high-resolution X-ray structure of bovine rhodopsin. A series of 64 CCR5 antagonists, 1-amino-2-phenyl-4-(piperidin-1-yl)-butanes, were docked into the putative binding site of the 3D model of CCR5 using the docking method, and the probable interaction model between CCR5 and the antagonists were obtained. The predicted binding affinities of the antagonists to CCR5 correlate well with the antagonist activities, and the interaction model could be used to explain many mutagenesis results. All these indicate that the 3D model of antagonist-CCR5 interaction is reliable. Based on the binding conformations and their alignment inside the binding pocket of CCR5, three-dimensional structure-activity relationship (3D QSAR) analyses were performed on these antagonists using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Both CoMFA and CoMSIA provide statistically valid models with good correlation and predictive power. The q(2)(r(cross)(2)) values are 0.568 and 0.587 for CoMFA and CoMSIA, respectively. The predictive ability of these models was validated by six compounds that were not included in the training set. Mapping these models back to the topology of the active site of CCR5 leads to a better understanding of antagonist-CCR5 interaction. These results suggest that the 3D model of CCR5 can be used in structure-based drug design and the 3D QSAR models provide clear guidelines and accurate activity predictions for novel antagonist design.  相似文献   

11.
Ye Y  Wei J  Dai X  Gao Q 《Amino acids》2008,35(2):389-396
A molecular docking study was performed on several structurally diverse A(2A) AR antagonists, including xanthines, and non-xanthine type antagonists to investigate their binding modes with A(2A) adenosine receptor (AR), one of the four subtypes of AR, which is currently of great interest as a target for therapeutic intervention, in particular for Parkinson's disease. The high-affinity binding site was found to be a hydrophobic pocket with the involvement of hydrogen bonding interactions as well as pi-pi stacking interactions with the ligands. The detailed binding modes for both xanthine and non-xanthine type A(2A) antagonists were compared and the essential features were extracted and converted to database searchable queries for virtual screening study of novel A(2A) AR antagonists. Findings from this study are helpful for elucidating the binding pattern of A(2A) AR antagonists and for the design of novel active ligands.  相似文献   

12.
Computational assessment of the binding interactions of drugs is an important component of computer-aided drug design paradigms. In this perspective, a set of 30 1-(substituted phenyl)-3-(naphtha[1, 2-d] thiazol-2-yl) urea/thiourea derivatives showing antiparkinsonian activity were docked into inhibitor binding cavity of human adenosine A(2A) receptor (AA2AR) to understand their mode of binding interactions in silico. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results signify that the molecular docking approach is reliable and produces a good correlation coefficient (r(2) = 0.483) between docking score and antiparkinsonian activity (in terms of % reduction in catalepsy score). Potent antiparkinsonian agents carried methoxy group in the phenyl ring, exhibited both hydrophilic and lipophilic interactions with lower energy of binding at the AA(2A)R. These molecular docking analyses should, in our view, contribute for further development of selective AA(2A)R antagonists for the treatment of Parkinson's disease.  相似文献   

13.
Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D(3) (hD(3)) receptor has been recently solved. Based on the hD(3) receptor crystal structure we generated dopamine D(2) and D(3) receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD(3) and hD(2L) receptors was differentiated by means of MD simulations and D(3) selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental K(i) was obtained for hD(3) and hD(2L) receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands.  相似文献   

14.
Abstract

The therapeutic potential of PPARs antagonists extends beyond diabetes. PPARs antagonists represent a new drug class that holds promise as a broadly applicable therapeutic approach for cancer treatment. Thus, there is a strong need to develop a rational design strategy for creating PPARs antagonists. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) models of PPARα receptor (CoMFA-1, q 2 = 0.636, r 2 = 0.953; CoMSIA-1, q 2 = 0.779, r 2 = 0.999) and PPARδ receptor (CoMFA-2, q 2 = 0.624, r 2 = 0.906; CoMSIA-2, q 2 = 0.627, r 2 = 0.959) were successfully constructed using 35 triazolone ring derivatives. Contour map analysis revealed that the electrostatic and hydrophobic fields played vital roles in the bioactivity of dual antagonists. Molecular docking studies suggested that the hydrogen bonding, electrostatic and hydrophobic interactions all influenced the binding of receptor-ligand complex. Based on the information obtained above, we designed a series of compounds. The docking results were mutually validated with 3D-QSAR results. Three-dimensional-QSAR and absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions indicated that 19 newly designed compounds possessed excellent biological activity and physicochemical properties. In summary, this research could provide theoretical guidance for the structural optimization of novel PPARα and δ dual antagonists.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
(S)-Glutamic acid (Glu), the major excitatory neurotransmitter in the central nervous system, operates through ionotropic as well as metabotropic receptors and is considered to be involved in certain neurological disorders and degenerative brain diseases that are currently without any satisfactory therapeutic treatment. Until recently, development of selective Glu receptor agonists had mainly been based on lead compounds, which were frequently naturally occurring excitants structurally related to Glu. These Glu receptor agonists generally contain heterocyclic acidic moieties, which has stimulated the use of bioisosteric replacement approaches for the design of subtype-selective agonists. Furthermore, most of these leads are conformationally restricted and stereochemically well-defined Glu analogs. Crystallization of the agonist binding domain of the GluR2 subunit of the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of ionotropic Glu receptors in the presence or absence of an agonist has provided important information about ligand-receptor interaction mechanisms. The availability of these binding domain crystal structures has formed the basis for rational design of ligands, especially for the AMPA and kainate subtypes of ionotropic Glu receptors. This mini-review will focus on structure-activity relationships on AMPA and kainate receptor agonists with special emphasis on stereochemical and three-dimensional aspects.  相似文献   

16.
Molecular docking is routinely used for understanding drug‐receptor interaction in modern drug design. Here, we describe the docking of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as inhibitors to human dihydrofolate reductase (DHFR). We docked 78 DMDP derivates collected from literature to DHFR and studied their specific interactions with DHFR. A new shape-based method, LigandFit, was used for docking DMDP derivatives into DHFR active sites. The result indicates that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.499) for the 73 compounds between docking score and IC50 values (Inhibitory Activity). The chloro substituted naphthyl ring of compound 63 makes significant hydrophobic contact with Leu 22, Phe 31 and Pro 61 of the DHFR active site leading to enhanced inhibition of the enzyme. The docked complexes provide better insights to design more potent DHFR inhibitors prior to their synthesis.  相似文献   

17.
An opioid receptor like (ORL1) receptor is a member of a family of G-protein coupled receptors. It is a new pharmaceutical target with broad therapeutic potential in the regulation of important biological functions such as nociception, mood disorders, drug abuse, learning or cardiovascular control. The crystal structure of this receptor in complex with an antagonist was determined recently (PDB ID: 4EA3). By removing the ligand and subjecting the empty receptor to molecular dynamics simulation in a solvated lipid membrane we obtained an optimized ORL1 receptor structure which could be used in a subsequent docking study of two structurally similar agonist–antagonist ligand pairs. Ligands were docked to the empty ORL1 receptor (with and without the third intracellular loop, IC3) in different orientations, and the resulting complexes were monitored during molecular dynamics simulation in order to see how the subtle differences in structure of agonists and antagonists might affect ligand–receptor interactions and trigger receptor activation. It was established that agonists and antagonists bound to the same, relatively large, binding site in the receptor, created by residues from transmembrane helices TM2, TM3, TM5, TM6 and TM7 and close to the extra cellular end of the receptor bundle. The key difference between these two types of ligands is interaction with residue Val2836.55 and a flexibility of ligand molecules. Ligands that cannot easily avoid this interaction will initiate movement of the intracellular end of TM6 (by a mechanism which involves Met1343.36 and several aminoacids of TM5) and possibly activate the receptor when assisted by G-protein.  相似文献   

18.
Proteinase-activated receptor 2 (PAR-2) is a G protein–coupled receptor activated by both trypsin and a specific agonist peptide, SLIGKV-NH2. It has been linked to various pathologies, including pain and inflammation. Several peptide and peptidomimetic agonizts for PAR-2 have been developed exhibiting high potency and efficacy. However, the number of PAR-2 antagonists is smaller. We screened the Food and Drug Administration library of approved compounds to retrieve novel antagonists for repositioning in the PAR-2 structure. The most efficacious compound bicalutamide bound to the PAR-2 binding groove near the extracellular domain as observed in the in silico studies. Further, it showed reduced Ca2+ release in trypsin activated cells in a dose-dependent manner. Hence, bicalutamide is a novel and potent PAR-2 antagonist which could be therapeutically useful in blocking multiple pathways diverging from PAR-2 signaling. Further, the novel scaffold of bicalutamide represents a new molecular structure for PAR-2 antagonism and can serve as a basis for further drug development.  相似文献   

19.
Molecular models of the M2 segments of the GluR1 channel have been elaborated using a molecular mechanics approach. The models are based on the homology between pore-lining segments of AMPA receptor channels and the KcsA K+ channel and on cyclic H bonds at the Q/R site of the AMPA receptor channel. The N-terminal region of an M2 segment of the channel is assumed, like that of the K+ channel, to adopt a helical conformation. Due to a deletion, the C-terminal end of the M2 segment of the AMPA receptor is more stretched than that of the K+ channel. As a result, only a single oxygen ring may be exposed to the AMPA receptor channel pore. Data on the block of AMPA receptor channels by dicationic adamantane derivatives have been used to select the most relevant model. The model with the oxygen of a Gly residue (position +2 from the Q/R site) exposed to the pore best fits the experimental data. This model also fits experimental data for another class of AMPA receptor antagonists, the polyamine amides. According to the model, the side-chains of the C-terminal residues are involved in intra-receptor interactions that stabilize the structure of the channel rather than in interactions with ions in the pore.  相似文献   

20.
The synthesis and Gly/NMDA, AMPA and KA receptor binding activities of some 3-hydroxy-quinazoline-2,4-dione derivatives are reported. The binding data, together with functional antagonism studies, showed that the 3-hydroxy-quinazoline-2,4-dione moiety can be considered a useful scaffold to obtain selective Gly/NMDA and AMPA receptor antagonists. In fact, introduction of chlorine atom(s) on precise position(s) of the benzofused moiety yielded Gly/NMDA selective antagonists, while the presence of the 6-(1,2,4-triazol-4-yl) group shifted the affinity and selectivity towards the AMPA receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号