首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulated evidence shows that G protein-coupled receptor 119 (GPR119) plays a key role in glucose and lipid metabolism. Here, we explored the effect of GPR119 on cholesterol metabolism and inflammation in THP-1 macrophages and atherosclerotic plaque progression in apoE−/− mice. We found that oxidized LDL (Ox-LDL) significantly induced long intervening noncoding RNA (lincRNA)-DYNLRB2-2 expression, resulting in the upregulation of GPR119 and ABCA1 expression through the glucagon-like peptide 1 receptor signaling pathway. GPR119 significantly decreased cellular cholesterol content and increased apoA-I-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. In vivo, apoE−/− mice were randomly divided into two groups and infected with lentivirus (LV)-Mock or LV-GPR119 for 8 weeks. GPR119-treated mice showed decreased liver lipid content and plasma TG, interleukin (IL)-1β, IL-6, and TNF-α levels, whereas plasma levels of apoA-I were significantly increased. Consistent with this, atherosclerotic lesion development was significantly inhibited by infection of apoE−/− mice with LV-GPR119. Our findings clearly indicate that, Ox-LDL significantly induced lincRNA-DYNLRB2-2 expression, which promoted ABCA1-mediated cholesterol efflux and inhibited inflammation through GPR119 in THP-1 macrophage-derived foam cells. Moreover, GPR119 decreased lipid and serum inflammatory cytokine levels, decreasing atherosclerosis in apoE−/− mice. These suggest that GPR119 may be a promising candidate as a therapeutic agent.  相似文献   

2.
3.
Recent studies have suggested that miR-590 may play critical roles in cardiovascular disease. This study was designed to determine the effects of miR-590 on lipoprotein lipase (LPL) expression and development of atherosclerosis in apolipoprotein E knockout (apoE−/−) mice and explore the potential mechanisms. En face analysis of the whole aorta revealed that miR-590 significantly decreased aortic atherosclerotic plaque size and lipid content in apoE−/− mice. Double immunofluorescence staining in cross-sections of the proximal aorta showed that miR-590 agomir reduced CD68 and LPL expression in macrophages in atherosclerotic lesions. MiR-590 agomir down-regulated LPL mRNA and protein expression as analyzed by RT-qPCR and western blotting analyses, respectively. Consistently, miR-590 decreased the expression of CD36 and scavenger receptor A1 (SRA1) mRNA and protein. High-performance liquid chromatography (HPLC)analysis confirmed that treatment with miR-590 agomir reduced lipid levels either in plasma orinabdominal cavity macrophages of apoE−/− mice. ELISA analysis showed that miR-590 agomir decreased plasma levels of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukin-1β (IL-1β)and interleukin-6 (IL-6). In contrast, treatment with miR-590 antagomir prevented or reversed these effects. Taken together, these results reveal a novel mechanism of miR-590 effects, and may provide new insights into the development of strategies for attenuating lipid accumulation and pro-inflammatory cytokine secretion.  相似文献   

4.

Aims

Expression of Heat Shock Protein-27 (HSP27) is reduced in human coronary atherosclerosis. Over-expression of HSP27 is protective against the early formation of lesions in atherosclerosis-prone apoE−/− mice (apoE−/−HSP27o/e) - however, only in females. We now seek to determine if chronic HSP27 over-expression is protective in a model of advanced atherosclerosis in both male and female apoE−/− mice.

Methods and Results

After 12 weeks on a high fat diet, serum HSP27 levels rose more than 16-fold in male and female apoE−/−HSP27o/e mice, although females had higher levels than males. Relative to apoE−/− mice, female apoE−/−HSP27o/e mice showed reductions in aortic lesion area of 35% for en face and 30% for cross-sectional sinus tissue sections – with the same parameters reduced by 21% and 24% in male cohorts; respectively. Aortic plaques from apoE−/−HSP27o/e mice showed almost 50% reductions in the area occupied by cholesterol clefts and free cholesterol, with fewer macrophages and reduced apoptosis but greater intimal smooth muscle cell and collagen content. The analysis of the aortic mechanical properties showed increased vessel stiffness in apoE−/−HSP27o/e mice (41% in female, 34% in male) compare to apoE−/− counterparts.

Conclusions

Chronic over-expression of HSP27 is atheroprotective in both sexes and coincides with reductions in lesion cholesterol accumulation as well as favorable plaque remodeling. These data provide new clues as to how HSP27 may improve not only the composition of atherosclerotic lesions but potentially their stability and resilience to plaque rupture.  相似文献   

5.
Celastrol is a triterpenoid compound extracted from the Chinese herb Tripterygium wilfordii Hook F. Previous research has revealed its anti-oxidant, anti-inflammatory, anti-cancer and immunosuppressive properties. Here, we investigated whether celastrol inhibits oxidized low-density lipoprotein (oxLDL) induced oxidative stress in RAW 264.7 cells. In addition, the effect of celastrol on atherosclerosis in vivo was assessed in apolipoprotein E knockout (apoE−/−) mouse fed a high-fat/high-cholesterol diet (HFC). We found that celastrol significantly attenuated oxLDL-induced excessive expression of lectin-like oxidized low density lipoprotein receptor-1(LOX-1) and generation of reactive oxygen species (ROS) in cultured RAW264.7 macrophages. Celastrol also decreased IκB phosphorylation and degradation and reduced production of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and proinflammatory cytokines such as tumor necrosis factor (TNF)-α and IL-6. Celastrol reduced atherosclerotic plaque size in apoE−/− mice. The expression of LOX-1 within the atherosclerotic lesions and generation of superoxide in mouse aorta were also significantly reduced by celastrol while the lipid profile was not improved. In conclusion, our results show that celastrol inhibits atherosclerotic plaque developing in apoE−/− mice via inhibiting LOX-1 and oxidative stress.  相似文献   

6.
Physical exercise is the cornerstone of cardiovascular disease treatment. The present study investigated whether exercise training affects atherosclerotic plaque composition through the modification of inflammatoryrelated pathways in apolipoprotein E knockout (apoE−/−) mice with diabetic atherosclerosis. Forty-five male apoE−/− mice were randomized into three equivalent (n=15) groups: control (CO), sedentary (SED), and exercise (EX). Diabetes was induced by streptozotocin administration. High-fat diet was administered to all groups for 12 weeks. Afterwards, CO mice were euthanatized, while the sedentary and exercise groups continued high-fat diet for 6 additional weeks. Exercising mice followed an exercise program on motorizedtreadmill (5 times/week, 60 min/session). Then, blood samples and atherosclerotic plaques in the aortic root were examined. A considerable (P<0.001) regression of the atherosclerotic lesions was observed in the exercise group (180.339±75.613×103µm2) compared to the control (325.485±72.302×103 µm2) and sedentary (340.188±159.108×103µm2) groups. We found decreased macrophages, matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-8 and interleukin-6 (IL-6) concentrations (P<0.05) in the atherosclerotic plaques of the exercise group. Compared to both control and sedentary groups, exercise training significantly increased collagen (P<0.05), elastin (P<0.001), and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) (P<0.001) content in the atherosclerotic plaques. Those effects paralleled with increased fibrous cap thickness and less internal elastic lamina ruptures after exercise training (P<0.05), while body-weight and lipid parameters did not significantly change. Plasma MMP-2 and MMP-3 concentrations in atherosclerotic tissues followed a similar trend. From our study we can conclude that exercise training reduces and stabilizes atherosclerotic lesions in apoE−/− mice with diabetic atherosclerosis. A favorable modification of the inflammatory regulators seems to explain those beneficial effects.Key words: diabetes, atherosclerosis, exercise, matrix metalloproteinases, plaque stability.  相似文献   

7.
Phosphatidylcholine-specific phospholipase C (PC-PLC) is a key factor in apoptosis and autophagy of vascular endothelial cells (VECs), and involved in atherosclerosis in apolipoprotein E−/− (apoE−/−) mice. But the endogenous regulators of PC-PLC are not known. We recently found a small chemical molecule (6-amino-2, 3-dihydro-3-hydroxymethyl-1, 4-benzoxazine, ABO) that could inhibit oxidized low-density lipoprotein (oxLDL)-induced apoptosis and promote autophagy in VECs, and further identified ABO as an inhibitor of annexin A7 (ANXA7) GTPase. Based on these findings, we hypothesize that ANXA7 is an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO may inhibit atherosclerosis in apoE−/− mice. In this study, we tested our hypothesis. The results showed that ABO suppressed oxLDL-induced increase of PC-PLC level and activity and promoted the co-localization of ANXA7 and PC-PLC in VECs. The experiments of ANXA7 knockdown and overexpression demonstrated that the action of ABO was ANXA7-dependent in cultured VECs. To investigate the relation of ANXA7 with PC-PLC in atherosclerosis, apoE−/− mice fed with a western diet were treated with 50 or 100 mg/kg/day ABO. The results showed that ABO decreased PC-PLC levels in the mouse aortic endothelium and PC-PLC activity in serum, and enhanced the protein levels of ANXA7 in the mouse aortic endothelium. Furthermore, both dosages of ABO significantly enhanced autophagy and reduced apoptosis in the mouse aortic endothelium. As a result, ABO significantly reduced atherosclerotic plaque area and effectively preserved a stable plaques phenotype, including reduced lipid deposition and pro-inflammatory macrophages, increased anti-inflammatory macrophages, collagen content and smooth muscle cells, and less cell death in the plaques. In conclusion, ANXA7 was an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO inhibited atherosclerosis in apoE−/− mice.  相似文献   

8.

Objectives

To investigate potential roles of inducible nitric oxide synthase (iNOS) and apolipoprotein (apoE) in inflammation and apoptosis promoting pathological changes in preeclampsia in pregnant mice with apoE and/or iNOS knock out.

Methods

B6.129 mice were crossed to produce WT, apoE−/−, apoE+/−, iNOS−/−, iNOS+/− and apoE−/−iNOS−/− groups. Variants were confirmed by PCR. Serum lipid parameters (triglycerides, TG; total cholesterol, TC; high density lipoprotein, HDL; and low density lipoprotein, LDL), NO levels and placental electronic microscopic ultrastructures were evaluated, and blood pressure (BP), 24-hour urine protein and pregnancy outcomes were recorded for pregnant F1 generation mice. Placental expressions of inflammatory (tumor necrosis factor-α, TNF-α; interleukin-6, IL-6; nuclear factor-κB, NF-κb) and apoptotic markers (Bcl-2 associated X protein, Bax, B-cell lymphoma/leukemia-2, Bcl-2, and Caspase-3) were evaluated via Western blot.

Results

Serum lipids, BP and 24-hour urine protein levels were shown to be significantly higher and parturition and placenta weights were lower in apoE−/− and apoE−/−iNOS−/− groups (p<0.05). NO levels were lower in the apoE−/−iNOS−/− group. In addition, inflammatory/apoptosis parameters, including TNF-α, IL-6, NF-κb, Bax, Bcl-2 and Caspase-3 in the apoE−/−iNOS−/− group (p<0.01), as well as in the apoE−/− group (p<0.05), and NF-κB, Bax in iNOS−/− group (p<0.05) were higher compared with WT group. However, most of the inflammatory/apoptosis parameters in the iNOS+/− and the apoE+/− groups (p>0.05) showed no differences. In addition, placenta vascular endothelial and trophoblast cell morphological changes were demonstrated in both the apoE−/−iNOS−/− and apoE−/− groups.

Conclusion

Elevated lipid metabolism and inflammatory/apoptosis parameters suggest a potentially significant role of apoE in preeclampsia pathology, as well as a relationship between iNOS and preeclampsia progression.  相似文献   

9.
Lipoprotein glomerulopathy (LPG) is a renal disease often accompanied by dyslipidemia and increased serum apoE levels. apoESendai (Arg145Pro), a rare mutant based on the apoE3 sequence carrying an apoE2 charge, causes LPG in humans and transgenic mice, but its effects on the artery wall are unknown. Macrophage expression of apoESendai may also directly influence renal and arterial homeostasis. We investigated the effects of macrophage-expressed apoESendai in apoE−/− mice with or without LDL receptor (LDLR). Murine bone marrow transduced to express apoE2, apoE3, or apoESendai was transplanted into lethally irradiated mice. Macrophage apoESendai expression reduced aortic lesion size and inflammation by 32 and 28%, respectively, compared with apoE2 in apoE−/− recipients. No differences in lesion size or inflammation were found between apoESendai and apoE3 in apoE−/− recipients. Macrophage apoESendai expression also reduced aortic lesion size by 18% and inflammation by 29% compared with apoE2 in apoE−/−/LDLR−/− recipients. Glomerular lesions compatible with LPG with increased mesangial matrix, extracellular lipid accumulation, and focal mesangiolysis were only observed in apoE−/−/LDLR−/− mice expressing apoESendai. Thus, macrophage expression of apoESendai protects against atherosclerosis while causing lipoprotein glomerulopathy. This is the first demonstration of an apoprotein variant having opposing effects on vascular and renal homeostasis.  相似文献   

10.
11.
C1q tumor necrosis factor-related protein 12 (CTRP12), a conserved paralog of adiponectin, is closely associated with cardiovascular disease. However, little is known about its role in atherogenesis. The aim of this study was to examine the influence of CTRP12 on atherosclerosis and explore the underlying mechanisms. Our results showed that lentivirus-mediated CTRP12 overexpression inhibited lipid accumulation and inflammatory response in lipid-laden macrophages. Mechanistically, CTRP12 decreased miR-155-5p levels and then increased its target gene liver X receptor α (LXRα) expression, which increased ATP binding cassette transporter A1 (ABCA1)- and ABCG1-dependent cholesterol efflux and promoted macrophage polarization to the M2 phenotype. Injection of lentiviral vector expressing CTRP12 decreased atherosclerotic lesion area, elevated plasma high-density lipoprotein cholesterol levels, promoted reverse cholesterol transport (RCT), and alleviated inflammatory response in apolipoprotein E-deficient (apoE−/−) mice fed a Western diet. Similar to the findings of in vitro experiments, CTRP12 overexpression diminished miR-155-5p levels but increased LXRα, ABCA1, and ABCG1 expression in the aortas of apoE−/− mice. Taken together, these results suggest that CTRP12 protects against atherosclerosis by enhancing RCT efficiency and mitigating vascular inflammation via the miR-155-5p/LXRα pathway. Stimulating CTRP12 production could be a novel approach for reducing atherosclerosis.Subject terms: Non-coding RNAs, Cardiovascular diseases  相似文献   

12.
Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E−/− mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE−/− mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20∶4n-6) and oleic acid (C18∶1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity. These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE−/− mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids.  相似文献   

13.
Atherosclerosis is an inflammatory disease regulated by infiltrating monocytes and T cells, among other cell types. Macrophage recruitment to atherosclerotic lesions is controlled by monocyte infiltration into plaques. Once in the lesion, macrophage proliferation in situ, apoptosis, and differentiation to an inflammatory (M1) or anti-inflammatory phenotype (M2) are involved in progression to advanced atherosclerotic lesions. We studied the role of phosphoinositol-3-kinase (PI3K) p110γ in the regulation of in situ apoptosis, macrophage proliferation and polarization towards M1 or M2 phenotypes in atherosclerotic lesions. We analyzed atherosclerosis development in LDLR−/−p110γ+/− and LDLR−/−p110γ−/− mice, and performed expression and functional assays in tissues and primary cells from these and from p110γ+/− and p110γ−/− mice. Lack of p110γ in LDLR−/− mice reduces the atherosclerosis burden. Atherosclerotic lesions in fat-fed LDLR−/−p110γ−/− mice were smaller than in LDLR−/−p110γ+/− controls, which coincided with decreased macrophage proliferation in LDLR−/−p110γ−/− mouse lesions. This proliferation defect was also observed in p110γ−/− bone marrow-derived macrophages (BMM) stimulated with macrophage colony-stimulating factor (M-CSF), and was associated with higher intracellular cyclic adenosine monophosphate (cAMP) levels. In contrast, T cell proliferation was unaffected in LDLR−/−p110γ−/− mice. Moreover, p110γ deficiency did not affect macrophage polarization towards the M1 or M2 phenotypes or apoptosis in atherosclerotic plaques, or polarization in cultured BMM. Our results suggest that higher cAMP levels and the ensuing inhibition of macrophage proliferation contribute to atheroprotection in LDLR−/− mice lacking p110γ. Nonetheless, p110γ deletion does not appear to be involved in apoptosis, in macrophage polarization or in T cell proliferation.  相似文献   

14.

Aims

Atherosclerosis is a chronic inflammatory disease and represents the major cause of cardiovascular morbidity and mortality. There is evidence that dihydrocapsaicin (DHC) can exert multiple pharmacological and physiological effects. Here, we explored the effect of DHC in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high-cholesterol diet.

Methods and Results

apoE−/− mice were randomly divided into two groups and fed a high-fat/high-cholesterol diet with or without DHC for 12 weeks. We demonstrated that cellular cholesterol content was significantly decreased while apoA1-mediated cholesterol efflux was significantly increased following treatment with DHC in THP-1 macrophage-derived foam cells. We also observed that plasma levels of TG, LDL-C, VLDL-C, IL-1β, IL-6, TNF-α and CRP were markedly decreased while plasma levels of apoA1 and HDL-C were significantly increased, and consistent with this, atherosclerotic lesion development was significantly inhibited by DHC treatment of apoE−/− mice fed a high-fat/high-cholesterol diet. Moreover, treatment with both LXRα siRNA and PPARγ siRNA made the up-regulation of DHC on ABCA1, ABCG1, ABCG5, SR-B1, NPC1, CD36, LDLR, HMGCR, apoA1 and apoE expression notably abolished while made the down-regulation of DHC on SRA1 expression markedly compensated. And treatment with PPARγ siRNA made the DHC-induced up-regulation of LXRα expression notably abolished while treatment with LXRα siRNA had no effect on DHC-induced PPARγ expression.

Conclusion

These observations provide direct evidence that DHC can significantly decrease atherosclerotic plaque formation involving in a PPARγ/LXRα pathway and thus DHC may represent a promising candidate for a therapeutic agent for the treatment or prevention of atherosclerosis.  相似文献   

15.

Rationale

It is clear that lipid disorder and inflammation are associated with cardiovascular diseases and underlying atherosclerosis. Nur77 has been shown to be involved in inflammatory response and lipid metabolism.

Objective

Here, we explored the role of Nur77 in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high cholesterol diet.

Methods and Results

The Nur77 gene, a nuclear hormone receptor, was highly induced by treatment with Cytosporone B (Csn-B, specific Nur77 agonist), recombinant plasmid over-expressing Nur77 (pcDNA-Nur77), while inhibited by treatment with siRNAs against Nur77 (si-Nur77) in THP-1 macrophage-derived foam cells, HepG2 cells and Caco-2 cells, respectively. In addition, the expression of Nur77 was highly induced by Nur77 agonist Csn-B, lentivirus encoding Nur77 (LV-Nur77), while silenced by lentivirus encoding siRNA against Nur77 (si-Nur77) in apoE−/− mice fed a high-fat/high cholesterol diet, respectively. We found that increased expression of Nur77 reduced macrophage-derived foam cells formation and hepatic lipid deposition, downregulated gene levels of inflammatory molecules, adhesion molecules and intestinal lipid absorption, and decreases atherosclerotic plaque formation.

Conclusion

These observations provide direct evidence that Nur77 is an important nuclear hormone receptor in regulation of atherosclerotic plaque formation and thus represents a promising target for the treatment of atherosclerosis.  相似文献   

16.
17.
18.

Background

[18F]-fluorodeoxyglucose (FDG) has been suggested for the clinical and experimental imaging of inflammatory atherosclerotic lesions. Significant FDG uptake in brown adipose tissue (BAT) has been observed both in humans and mice. The objective of the present study was to investigate the influence of periaortic BAT on apolipoprotein E-deficient (apoE−/−) mouse atherosclerotic lesion imaging with FDG.

Methods

ApoE−/− mice (36±2 weeks-old) were injected with FDG (12±2 MBq). Control animals (Group A, n = 7) were injected conscious and kept awake at room temperature (24°C) throughout the accumulation period. In order to minimize tracer activity in periaortic BAT, Group B (n = 7) and C (n = 6) animals were injected under anaesthesia at 37°C and Group C animals were additionally pre-treated with propranolol. PET/CT acquisitions were performed prior to animal euthanasia and ex vivo analysis of FDG biodistribution.

Results

Autoradiographic imaging indicated higher FDG uptake in atherosclerotic lesions than in the normal aortic wall (all groups, P<0.05) and the blood (all groups, P<0.01) which correlated with macrophage infiltration (R = 0.47; P<0.001). However, periaortic BAT uptake was either significantly higher (Group A, P<0.05) or similar (Group B and C, P = NS) to that observed in atherosclerotic lesions and was shown to correlate with in vivo quantified aortic FDG activity.

Conclusion

Periaortic BAT FDG uptake was identified as a confounding factor while using FDG for the non-invasive imaging of mouse atherosclerotic lesions.  相似文献   

19.
20.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that is characterized by autoantibody production and inflammatory disease involving multiple organs. Premature atherosclerosis is a common complication of SLE and results in substantial morbidity and mortality from cardiovascular disease (CVD). The reasons for the premature atherosclerosis in SLE are incompletely understood, although chronic inflammation is thought to play an important role. There is currently no known preventative treatment of premature atherosclerosis in SLE. Mycophenolate mofetil (MMF) is an immunosuppressive agent that is commonly used for treatment of patients with SLE. In order to study the impact of this drug on murine lupus disease including premature atherosclerosis development, we treated gld.apoE−/− mice, a model of SLE and accelerated atherosclerosis, with MMF. We maintained seven-week old gld.apoE−/− mice on a high cholesterol Western diet with or without MMF. After 12 weeks on diet, mice receiving MMF showed decreased atherosclerotic lesion area compared to the control group. MMF treatment also improved the lupus phenotype, indicated by a significant decrease circulating autoantibody levels and ameliorating lupus nephritis associated with this model. This data suggests that the effects of MMF on the immune system may not only be beneficial for lupus, but also for inflammation driving lupus-associated atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号