首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten anthocyanin components have been detected in roots of purple sweet potato (Ipomoea batatas Lam.) by high‐performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. All the anthocyanins were exclusively cyanidins or peonidin 3‐sophoroside‐5‐glucosides and their acylated derivatives. The total anthocyanin content in purple sweet potato powder obtained by solid‐phase extraction was 66 mg g?1. A strong capacity of purple sweet potato anthocyanins (PSPA) to scavenge reactive oxygen species (superoxide, hydroxyl radical) and the stable 1,1‐diphenyl‐2‐picrylhydrazyl organic free radical was found in vitro using the electron spin resonance technique. To determine the functional roles of anthocyanins in leaves in vivo, for the first time, supplemental anthocyanins were infiltrated into leaves of Arabidopsis thaliana double mutant of the ecotype Landsberg erecta (tt3tt4) deficient in anthocyanin biosynthesis. Chlorophyll fluorescence imaging showed that anthocyanins significantly ameliorated the inactivation of photosystems II during prolonged high‐light (1300 µmol m?2 s?1) exposure. Comet assay of DNA revealed an obvious role of supplemental PSPA in alleviating DNA damage by high light in leaves. Our results suggest that anthocyanins could function in vitro and in vivo to alleviate the direct or indirect oxidative damage of the photosynthetic apparatus and DNA in plants caused by high‐light stress.  相似文献   

2.
3.
4.
The usual red color of young leaves of peach (Prunus persica f. atropurpurea) is due to the accumulation of anthocyanin. Real-time PCR analysis revealed a strong correlation between the expression levels of anthocyanin biosynthetic genes and anthocyanin content in leaves at different developmental stages. The expression profiles of both anthocyanin biosynthetic genes and photorespiratory genes showed significant changes in leaves held in the dark or exposed to heat stress, compared with controls. The expression of anthocyanin biosynthetic genes dramatically decreased in peach red leaves following dark or heat treatments, resulting in a significant decrease of anthocyanin accumulation. However, the photorespiration-related genes GDCH and GOX exhibited increased expression in peach leaves after dark or heat treatment. Moreover, the expression levels of GDCH and GOX in the Arabidopsis chi/f3h mutant that does not accumulate anthocyanins were higher than in the wild type. Overall, these results support the hypothesis that photorespiration-related genes might be involved in the regulation of anthocyanin biosynthesis. This finding provides a new insight into our understanding of the mechanism underlying the control of anthocyanin biosynthesis in plants.  相似文献   

5.
Gynura bicolor DC., a traditional vegetable in Japan, is cultivated as Kinjisou and Suizenjina in Ishikawa and Kumamoto prefectures, respectively. The adaxial side of the leaves of G. bicolor grown in a field is green, and the abaxial side is reddish purple. It has been reported that these reddish purple pigments are anthocyanins. Although we established a culture system of G. bicolor, the leaves of G. bicolor plants grown under our culture conditions showed green color on both sides of all leaves. We investigated the effects of phytohormones and chemical treatments on anthocyanin accumulation in cultured plants. Although anthocyanin accumulation in the leaves was slightly stimulated, anthocyanins accumulation in the roots of the cultured plant was induced remarkably by 25–50 μM methyl jasmonate (MJ) treatment. This induction was affected by light irradiation and sucrose concentration in the culture medium. However, salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid did not induce anthocyanin accumulation in roots. And then, combinations of MJ and SA or MJ and AgNO3 did not stimulate the anthocyanin accumulation in the root as found in the case of treatment by MJ solely.  相似文献   

6.
7.
8.
9.
铅对几种作物生长的影响及其在植物体内的积累   总被引:5,自引:0,他引:5       下载免费PDF全文
根据将醋酸铅溶液施入土壤及喷洒叶片的盆栽试验可以确定:(1)铅对植物的毒性不大,植物对铅的忍耐力很强。目前自然界中的铅污染程度不足以直接伤害植物本身。(2)溶液中的铅可以被植物的根系吸收,也可以被叶片直接吸收。吸收量与环境中的铅浓度成正比。(3)铅在植物体中移动性很小,根吸收的铅主要积累在根部,叶片吸收的铅主要积累在叶部。有少量铅可以向上或向下转移,但极少能进入果实的内部及块根的淀粉中。  相似文献   

10.
11.
Abstract

Anthocyanins are secondary metabolites, which play important roles in the physiology of plants. In tomato (Solanum lycopersicum L.), anthocyanins are normally synthesized only in vegetative tissues. M375 is a mutant unable to produce anthocyanins in leaves and stems. In this study, we investigated the anthocyanin biosynthetic pathway in M375 and in its genetic background, Alice, in order to find out where the anthocyanin biosynthesis is blocked, along the pathway, in the mutant. Anthocyanins accumulation was enhanced by sucrose only in the wild type, even though the expression of several genes involved in anthocyanin biosynthesis was normal in both the genotypes. Genes coding for the final steps along the anthocyanin biosynthetic pathway were, however, less expressed in the M375 when compared to the wild type.  相似文献   

12.
Methyl jasmonate (JA-Me) at concentrations of 0.1, 0.5 and 1.0 % (w/w) greatly stimulated anthocyanins accumulation in shoots of young plants of Kalanchoe blossfeldiana when it was applied around the stem as a lanolin paste. Stimulatory effect of JA-Me was evidently observed as early as two days after treatment. Anthocyanins were formed in the main and lateral shoots, including petioles, both below and above portions of the treatment. When leaves were removed from the plant, almost no anthocyanin formation was observed. It should be mentioned that leaves are necessary for the anthocyanin accumulation in stems induced by JA-Me.  相似文献   

13.
14.
15.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1167-1174
Abscisic acid (ABA) at 3.8 µM suppressed both in vivoand in vitro nitrate reductase activity in roots, stems andleaves of potato plants grown in solution culture. Suppressionwas maximal between 24 and 48 h, followed by recovery of activityat 72 h in roots and leaves and at 96 h in stems. Removal from ABA after 24 h resulted in complete recovery ofnitrate reductase activity in roots by 24 h and partial recoveryin leaves. ABA treatment enhanced nitrate accumulation in roots,decreased that of leaves, but had no effect on stem nitratecontent. ABA enhanced decay of the enzyme following nitrate removal;by 7 h activity in roots was 22.5% of the initial value comparedto 55% in the control. ABA showed a less drastic effect on lossof activity in leaves and stems. These results indicate thatABA suppression of nitrate reductase activity is not dependenton nitrate uptake, and although it reduced leaf nitrate contentthere was no clear relationship between tissue nitrate levelsand the ABA response. (Received September 13, 1984; Accepted July 1, 1985)  相似文献   

16.
17.
Carnations have anthocyanins acylated with malate. Although anthocyanin acyltransferases have been reported in several plant species, anthocyanin malyltransferase (AMalT) activity in carnation has not been identified. Here, an acyl donor substance of AMalT, 1-O-β-d-malylglucose, was extracted and partially purified from the petals of carnation. This was synthesized chemically to analyze AMalT activity in a crude extract from carnation. Changes in the AMalT activity showed close correlation to the accumulation of pelargonidin 3-malylglucoside (Pel 3-malGlc) during the development of red petals of carnation, but neither AMalT activity nor Pel 3-malGlc accumulation was detectable in roots, stems and leaves.  相似文献   

18.

Main Conclusion

Different abiotic stress conditions induce distinct sets of anthocyanins, indicating that anthocyanins have different biological functions, or that decoration patterns of each anthocyanin are used for unique purposes during stress. The induction of anthocyanin accumulation in vegetative tissues is often considered to be a response of plants to biotic or abiotic stress conditions. Arabidopsis thaliana (Arabidopsis) accumulates over 20 anthocyanins derived from the anthocyanidin cyanidin in an organ-specific manner during development, but the anthocyanin chemical diversity for their alleged stress protective functions remains unclear. We show here that, when grown in various abiotic stress conditions, Arabidopsis not only often accumulates significantly higher levels of total anthocyanins, but different stress conditions also favor the accumulation of different sets of anthocyanins. For example, the anthocyanin patterns of seedlings grown at pH 3.3 or in media lacking phosphate are very similar and characterized by relatively high levels of the anthocyanins A8 and A11. In contrast, anthocyanin inductive conditions (AIC) provided by high sucrose media are characterized by high accumulation of A9* and A5 relative to other stress conditions. The modifications present in each condition correlate reasonably well with the induction of the respective anthocyanin modification enzymes. Taken together, our results suggest that Arabidopsis anthocyanin profiles provide ‘fingerprints’ that reflect the stress status of the plants.  相似文献   

19.
Treatment of sweet potato plants cultured in vitro with a vaporof methyl jasmonate (MeJA) induced an accumulation in leavesof a large amount of protein with an apparent molecular massof 18 kDa. This protein, designated ipomoelin, was purified,and the amino acid sequences of proteolytic fragments were determined.Screening a cDNA library of MeJA-treated leaves by oligonucleotideprobes designed from the peptide sequences identified a clonethat could code for a polypeptide with 154 amino acids. Thededuced amino acid sequence of ipomoelin showed an overall aminoacid identity of 25% with the salt-inducible SalT protein ofrice. In addition, the C-terminal 70 amino acid sequence ofipomoelin showed about 50% identity with the C-terminal aminoacid sequences of seed lectins from Moraceae. The gene for ipomoelinwas present in a few copies in the genome of sweet potato. ThemRNA for ipomoelin was detected in leaves and petioles, butnot in stems and tuberous roots, of sweet potato plants grownin the field. Mechanical wounding of leaves induced ipomoelinmRNA both locally and systemically, while treatment of leaveswith ABA, salt, or a high level of sucrose did not induce ipomoelinmRNA. By contrast, ABA-inducible mRNA for sporamin was not inducedby MeJA. These results suggest that ipomoelin is involved indefensive reactions of leaves in response to wounding and thatJA-mediated wound-induction of ipomoelin occurs independentlyof ABA. (Received January 6, 1997; Accepted March 13, 1997)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号