首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu L  Chen J  Li XY  Ren S  Huang CX  Wu G  Li XY  Jiang XJ 《Molecular biology reports》2012,39(4):3847-3852
Na+/Ca2+ exchanger (NCX) plays important roles in cardiac electrical activity and calcium homeostasis. NCX current (INCX) shows transmural gradient across left ventricle in many species. Previous studies demonstrated that NCX expression was increased and transmural gradient of INCX was disrupted in failing heart, but the mechanisms underlying INCX remodeling still remain unknown. In present study, we used patch clamp technique to record INCX from subepicardial (EPI) myocytes and subendocardial (ENDO) myocytes isolated from sham operation (SO) mice and heart failure (HF) mice. Our results showed that INCX was higher in normal EPI cells compared with that in ENDO, whatever for forward mode or reverse mode. In HF group, INCX was significantly up-regulated, but EPI-ENDO difference was disrupted because of a more increase of INCX in ENDO myocytes. In order to explore the molecular mechanism underlying remodeling of INCX in failing heart, we detected the protein expression of NCX1 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) by Western blot. We found that CaMKII activity was dramatically enhanced and parallel with the expression of NCX1 in failing heart. Our study demonstrated that transmural gradient of INCX existed in murine left ventricle, and increased activity of CaMKII should account for INCX remodeling in failing heart.  相似文献   

2.
We previously demonstrated a transmural gradient in Na/K pump current (I P) and [Na+] i , with the highest maximum I P and lowest [Na+] i in epicardium. The present study examines the relationship between the transmural gradient in I P and Na/Ca exchange (NCX). Myocytes were isolated from canine left ventricle. Whole-cell patch clamp was used to measure current generated by NCX (I NCX) and inward background calcium current (I ibCa), defined as inward current through Ca2+ channels less outward current through Ca2+-ATPase. When resting myocytes from endocardium (Endo), midmyocardium (Mid) or epicardium (Epi) were studied in the same conditions, I NCX was the same and I ibCa was zero. Moreover, Western blots were consistent with NCX protein being uniform across the wall. However, the gradient in [Na+] i , with I ibCa = 0, should create a gradient in [Ca2+] i . To test this hypothesis, we measured resting [Ca2+] i using two methods, based on either transport or the Ca2+-sensitive dye Fura2. Both methods demonstrated a significant transmural gradient in resting [Ca2+] i , with Endo > Mid > Epi. This gradient was eliminated by exposing Epi to sufficient ouabain to partially inhibit Na/K pumps, thus increasing [Na+] i to values similar to those in Endo. These data support the existence of a transmural gradient for Ca2+ removal by NCX. This gradient is not due to differences in expression of NCX; rather, it is generated by a transmural gradient in [Na+] i , which is due to a transmural gradient in plasma membrane expression of the Na/K pump.  相似文献   

3.
NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene.  相似文献   

4.
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.  相似文献   

5.
Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating JNK to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca2+]i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca2+]i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.  相似文献   

6.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   

7.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   

8.
Much less is known about the contributions of the Na+/Ca2+ exchanger (NCX) and sarcoplasmic reticulum (SR) Ca2+ pump to cell relaxation in neonatal compared with adult mammalian ventricular myocytes. Based on both biochemical and molecular studies, there is evidence of a much higher density of NCX at birth that subsequently decreases during the next 2 wk of development. It has been hypothesized, therefore, that NCX plays a relatively more important role for cytosolic Ca2+ decline in neonates as well as, perhaps, a role in excitation-contraction coupling in reverse mode. We isolated neonatal ventricular myocytes from rabbits in four different age groups: 3, 6, 10, and 20 days of age. Using an amphotericin-perforated patch-clamp technique in fluo-3-loaded myocytes, we measured the caffeine-induced inward NCX current (INCX) and the Ca2+ transient. We found that the integral of INCX, an indicator of SR Ca2+ content, was greatest in myocytes from younger age groups when normalized by cell surface area and that it decreased with age. The velocity of Ca2+ extrusion by NCX (VNCX) was linear with [Ca2+] and did not indicate saturation kinetics until [Ca2+] reached 1–3 µM for each age group. There was a significantly greater time delay between the peaks of INCX and the Ca2+ transient in myocytes from the youngest age groups. This observation could be related to structural differences in the subsarcolemmal microdomains as a function of age. ontogeny of cardiac excitation-contraction coupling; sodium/calcium exchanger; cytosolic calcium concentration; subsarcolemmal calcium concentration; sarcoplasmic reticulum calcium content  相似文献   

9.
PMAP-23 (RIIDLLWRVRRPQKPKFVTVWVR-NH2) is an antimicrobial peptide (AMP) derived from porcine myeloid. Membrane disruption is thought to underpin the anticandidal activity of PMAP-23. However, many AMPs act via mechanisms other than simple membrane permeabilisation. Here, we investigated the anticandidal mechanism of PMAP-23 at low concentrations. Membrane disruption and depolarisation and rapid K+ efflux were observed in Candida albicans cells treated with 5?µM PMAP-23. In contrast, 2.5?µM PMAP-23 caused membrane depolarisation and K+ efflux without membrane disruption. The lower PMAP-23 concentration increased cytosolic and mitochondrial Ca2+ levels. Disruption of Ca2+ homeostasis altered the NAD+/NADH ratio and resulted in reactive oxygen species (ROS) accumulation and glutathione oxidation. PMAP-23 treatment also stimulated apoptosis, as evidenced by metacaspase activation, DNA fragmentation, and phosphatidylserine externalisation. Pretreatment with the mitochondrial Ca2+ uptake inhibitor (ruthenium red) or ROS scavenger (N-acetylcysteine) attenuated these apoptotic events. Our results suggest that PMAP-23 induces apoptosis as antifungal mechanism, and mitochondrial Ca2+-induced ROS is major factor to trigger the apoptosis. Thus, the anticandidal activity of PMAP-23 is not based solely on disruption of biological membranes but also involves induction of apoptosis via mitochondrial Ca2+-dependent ROS. PMAP-23 mode of action sheds new light on the antifungal mechanism of antimicrobial peptides, supporting the role of Ca2+ and ROS in apoptosis regulation.  相似文献   

10.
Sterile cultures of Lemna minor grown in the presence of either nitrate, ammonium or amino acids failed to show significant changes in glutamate dehydrogenase (GDH) levels in response to nitrogen source. Crude and partially purified GDH preparations exhibit NADH and NADPH dependent activities. The ratio of these activities remain ca 12:1 during various treatments. Mixed substrate and product inhibition studies as well as electrophoretic behaviour suggest the existence of a single enzyme which is active in the presence of both coenzymes. GDH activity was found to be localized mainly in mitochondria. Kinetic studies revealed normal Michaelis kinetics with most substrates but showed deviations with NADPH and glutamate. A Hill-coefficient of 1.9 determined with NADPH indicates positive cooperative interactions, whereas a Hill-coefficient of 0.75 found with glutamate may be interpreted in terms of negative cooperative interactions. NADH dependent activity decreases rapidly during gel filtration whereas the NAD+ and NADPH activities remain unchanged. GDH preparations which have been pretreated with EDTA show almost complete loss of NADH and NAD+ activities. NADPH activity again remains unaffected. NAD+ activity is fully restored by adding Ca2+ or Mg2+, whereas the NADH activity can only be recovered by Ca2+ but not at all by Mg2+. Moderate inhibition of GDH reactions observed with various adenylates are fully reversed by adding Ca2+, indicating that the adenylate inhibition is due solely to the chelating properties of these compounds.  相似文献   

11.
《Cell calcium》2015,58(5-6):321-336
The quintessential property of developing cardiomyocytes is their ability to beat spontaneously. The mechanisms underlying spontaneous beating in developing cardiomyocytes are thought to resemble those of adult heart, but have not been directly tested. Contributions of sarcoplasmic and mitochondrial Ca2+-signaling vs. If-channel in initiating spontaneous beating were tested in human induced Pluripotent Stem cell-derived cardiomyocytes (hiPS-CM) and rat Neonatal cardiomyocytes (rN-CM). Whole-cell and perforated-patch voltage-clamping and 2-D confocal imaging showed: (1) both cell types beat spontaneously (60–140/min, at 24 °C); (2) holding potentials between −70 and 0 mV had no significant effects on spontaneous pacing, but suppressed action potential formation; (3) spontaneous pacing at −50 mV activated cytosolic Ca2+-transients, accompanied by in-phase inward current oscillations that were suppressed by Na+-Ca2+-exchanger (NCX)- and ryanodine receptor (RyR2)-blockers, but not by Ca2+- and If-channels blockers; (4) spreading fluorescence images of cytosolic Ca2+-transients emanated repeatedly from preferred central cellular locations during spontaneous beating; (5) mitochondrial un-coupler, FCCP at non-depolarizing concentrations (∼50 nM), reversibly suppressed spontaneous pacing; (6) genetically encoded mitochondrial Ca2+-biosensor (mitycam-E31Q) detected regionally diverse, and FCCP-sensitive mitochondrial Ca2+-uptake and release signals activating during INCX oscillations; (7) If-channel was absent in rN-CM, but activated only negative to −80 mV in hiPS-CM; nevertheless blockers of If-channel failed to alter spontaneous pacing.  相似文献   

12.
Summary The control by nucleotides of the Ca2+-activated channel which regulates the nonspecific permeability of the mitochondrial inner membrane has been investigated quantitatively. The cooperative binding of two molecules of ADP to the internal (matrix) side of the channel causes a mixed-type inhibition of channel activity. ATP, AMP, cAMP and GDP are all ineffective. NADH shows a pattern of inhibition similar to that of ADP, though the apparentK I is higher by a factor of 200. NADPH relieves the inhibition by NADH. NAD+ also inhibits, but its affinity is a factor of 10 less than that of NADH. When ADP and NADH are added together, they act synergistically to inhibit the Ca2+-activated channel. It is concluded that the concept of the modification of enzyme activity by the allosteric binding of nucleotides, which is well established for soluble enzyme systems, also has application to the regulation of channels that control membrane permeability.  相似文献   

13.
Thrombin acts on the endothelium by activating protease-activated receptors (PARs). The endothelial thrombin-PAR system becomes deregulated during pathological conditions resulting in loss of barrier function and a pro-inflammatory and pro-angiogenic endothelial phenotype. We reported recently that the ion transporter Na+/Ca2+ exchanger (NCX) operating in the Ca2+-influx (reverse) mode promoted ERK1/2 activation and angiogenesis in vascular endothelial growth factor-stimulated primary human vascular endothelial cells. Here, we investigated whether Ca2+ influx through NCX was involved in ERK1/2 activation, angiogenesis, and endothelial barrier dysfunction in response to thrombin. Reverse-mode NCX inhibitors and RNAi-mediated NCX1 knockdown attenuated ERK1/2 phosphorylation in response to thrombin or an agonist of PAR-1, the main endothelial thrombin receptor. Conversely, promoting reverse-mode NCX by suppressing Na+-K+-ATPase activity enhanced ERK1/2 activation. Reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced primary human vascular endothelial cell angiogenesis, quantified as proliferation and tubular differentiation. Reverse-mode NCX inhibitors or NCX1 knockdown preserved barrier integrity upon thrombin stimulation in vitro. Moreover, the reverse-mode NCX inhibitor SEA0400 suppressed Evans'' blue albumin extravasation to the lung and kidneys and attenuated edema formation and ERK1/2 activation in the lungs of mice challenged with a peptide activator of PAR-1. Mechanistically, thrombin-induced ERK1/2 activation required NADPH oxidase 2-mediated reactive oxygen species (ROS) production, and reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced ROS production. We propose that reverse-mode NCX is a novel mechanism contributing to thrombin-induced angiogenesis and hyperpermeability by mediating ERK1/2 activation in a ROS-dependent manner. Targeting reverse-mode NCX could be beneficial in pathological conditions involving unregulated thrombin signaling.  相似文献   

14.
This study addressed the hypothesis that cardiac Sirtuin 1 (Sirt1) deficiency alters cardiomyocyte Ca2+ and Na+ regulation, leading to cardiac dysfunction and arrhythmogenesis. We used mice with cardiac‐specific Sirt1 knockout (Sirt1?/?). Sirt1flox/flox mice were served as control. Sirt1?/? mice showed impaired cardiac ejection fraction with increased ventricular spontaneous activity and burst firing compared with those in control mice. The arrhythmic events were suppressed by KN93 and ranolazine. Reduction in Ca2+ transient amplitudes and sarcoplasmic reticulum (SR) Ca2+ stores, and increased SR Ca2+ leak were shown in the Sirt1?/? mice. Electrophysiological measurements were performed using patch‐clamp method. While L‐type Ca2+ current (ICa, L) was smaller in Sirt1?/? myocytes, reverse‐mode Na+/Ca2+ exchanger (NCX) current was larger compared with those in control myocytes. Late Na+ current (INa, L) was enhanced in the Sirt1?/? mice, alongside with elevated cytosolic Na+ level. Increased cytosolic and mitochondrial reactive oxygen species (ROS) were shown in Sirt1?/? mice. Sirt1?/? cardiomyocytes showed down‐regulation of L‐type Ca2+ channel α1c subunit (Cav1.2) and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), but up‐regulation of Ca2+/calmodulin‐dependent protein kinase II and NCX. In conclusions, these findings suggest that deficiency of Sirt1 impairs the regulation of intracellular Ca2+ and Na+ in cardiomyocytes, thereby provoking cardiac dysfunction and arrhythmogenesis.  相似文献   

15.
Calcium is a major regulator of cellular metabolism. Calcium controls mitochondrial respiration, and calcium signaling is used to meet cellular energetic demands through energy production in the organelle. Although it has been widely assumed that Ca2+-actions require its uptake by mitochondrial calcium uniporter (MCU), alternative pathways modulated by cytosolic Ca2+ have been recently proposed. Recent findings have indicated a role for cytosolic Ca2+ signals acting on mitochondrial NADH shuttles in the control of cellular metabolism in neurons using glucose as fuel. It has been demonstrated that AGC1/Aralar, the component of the malate/aspartate shuttle (MAS) regulated by cytosolic Ca2+, participates in the maintenance of basal respiration exerted through Ca2+-fluxes between ER and mitochondria, whereas mitochondrial Ca2+-uptake by MCU does not contribute. Aralar/MAS pathway, activated by small cytosolic Ca2+ signals, provides in fact substrates, redox equivalents and pyruvate, fueling respiration. Upon activation and increases in workload, neurons upregulate OxPhos, cytosolic pyruvate production and glycolysis, together with glucose uptake, in a Ca2+-dependent way, and part of this upregulation is via Ca2+ signaling. Both MCU and Aralar/MAS contribute to OxPhos upregulation, Aralar/MAS playing a major role, especially at small and submaximal workloads. Ca2+ activation of Aralar/MAS, by increasing cytosolic NAD+/NADH provides Ca2+-dependent increases in glycolysis and cytosolic pyruvate production priming respiration as a feed-forward mechanism in response to workload. Thus, except for glucose uptake, these processes are dependent on Aralar/MAS, whereas MCU is the relevant target for Ca2+ signaling when MAS is bypassed, by using pyruvate or β-hydroxybutyrate as substrates.  相似文献   

16.
Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+/NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+-dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+-dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+, that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+-sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.  相似文献   

17.
It is well established that NADH/NAD+ redox balance is heavily perturbed in diabetes, and the NADH/NAD+ redox imbalance is a major source of oxidative stress in diabetic tissues. In mitochondria, complex I is the only site for NADH oxidation and NAD+ regeneration and is also a major site for production of mitochondrial reactive oxygen species (ROS). Yet how complex I responds to the NADH/NAD+ redox imbalance and any potential consequences of such response in diabetic pancreas have not been investigated. We report here that pancreatic mitochondrial complex I showed aberrant hyperactivity in either type 1 or type 2 diabetes. Further studies focusing on streptozotocin (STZ)-induced diabetes indicate that complex I hyperactivity could be attenuated by metformin. Moreover, complex I hyperactivity was accompanied by increased activities of complexes II to IV, but not complex V, suggesting that overflow of NADH via complex I in diabetes could be diverted to ROS production. Indeed in diabetic pancreas, ROS production and oxidative stress increased and mitochondrial ATP production decreased, which can be attributed to impaired pancreatic mitochondrial membrane potential that is responsible for increased cell death. Additionally, cellular defense systems such as glucose 6-phosphate dehydrogenase, sirtuin 3, and NQO1 were found to be compromised in diabetic pancreas. Our findings point to the direction that complex I aberrant hyperactivity in pancreas could be a major source of oxidative stress and β cell failure in diabetes. Therefore, inhibiting pancreatic complex I hyperactivity and attenuating its ROS production by various means in diabetes might serve as a promising approach for anti-diabetic therapies.  相似文献   

18.
Panaxydol, a polyacetylenic compound derived from Panax ginseng roots, has been shown to inhibit the growth of cancer cells. In this study, we demonstrated that panaxydol induced apoptosis preferentially in transformed cells with a minimal effect on non-transformed cells. Furthermore, panaxydol was shown to induce apoptosis through an increase in intracellular Ca2+ concentration ([Ca2+]i), activation of JNK and p38 MAPK, and generation of reactive oxygen species (ROS) initially by NADPH oxidase and then by mitochondria. Panaxydol-induced apoptosis was caspase-dependent and occurred through a mitochondrial pathway. ROS generation by NADPH oxidase was critical for panaxydol-induced apoptosis. Mitochondrial ROS production was also required, however, it appeared to be secondary to the ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the membrane translocation of regulatory p47phox and p67phox subunits and shown to be necessary for ROS generation by panaxydol treatment. Panaxydol triggered a rapid and sustained increase of [Ca2+]i, which resulted in activation of JNK and p38 MAPK. JNK and p38 MAPK play a key role in activation of NADPH oxidase, since inhibition of their expression or activity abrogated membrane translocation of p47phox and p67phox subunits and ROS generation. In summary, these data indicate that panaxydol induces apoptosis preferentially in cancer cells, and the signaling mechanisms involve a [Ca2+]i increase, JNK and p38 MAPK activation, and ROS generation through NADPH oxidase and mitochondria.  相似文献   

19.
Maintaining redox balance is critical for the production of heterologous secondary metabolites, whereas on various occasions the native cofactor balance does not match the needs in engineered microorganisms. In this study, 7-dehydrocholesterol (7-DHC, a crucial precursor of vitamin D3) biosynthesis pathway was constructed in Saccharomyces cerevisiae BY4742 with endogenous ergosterol synthesis pathway blocked by knocking out the erg5 gene (encoding C-22 desaturase). The deletion of erg5 led to redox imbalance with higher ratio of cytosolic free NADH/NAD+ and more glycerol and ethanol accumulation. To alleviate the redox imbalance, a water-forming NADH oxidase (NOX) and an alternative oxidase (AOX1) were employed in our system based on cofactor regeneration strategy. Consequently, the production of 7-dehydrocholesterol was increased by 74.4% in shake flask culture. In the meanwhile, the ratio of free NADH/NAD+ and the concentration of glycerol and ethanol were reduced by 78.0%, 50.7% and 7.9% respectively. In a 5-L bioreactor, the optimal production of 7-DHC reached 44.49(±9.63) mg/L. This study provides a reference to increase the production of some desired compounds that are restricted by redox imbalance.  相似文献   

20.
Andersen-Tawil syndrome (ATS) is a rare inherited channelopathy. The cardiac phenotype in ATS is typified by a prominent U wave and ventricular arrhythmia. An effective treatment for this disease remains to be established. We reprogrammed somatic cells from three ATS patients to generate induced pluripotent stem cells (iPSCs). Multi-electrode arrays (MEAs) were used to record extracellular electrograms of iPSC-derived cardiomyocytes, revealing strong arrhythmic events in the ATS-iPSC-derived cardiomyocytes. Ca2+ imaging of cells loaded with the Ca2+ indicator Fluo-4 enabled us to examine intracellular Ca2+ handling properties, and we found a significantly higher incidence of irregular Ca2+ release in the ATS-iPSC-derived cardiomyocytes than in control-iPSC-derived cardiomyocytes. Drug testing using ATS-iPSC-derived cardiomyocytes further revealed that antiarrhythmic agent, flecainide, but not the sodium channel blocker, pilsicainide, significantly suppressed these irregular Ca2+ release and arrhythmic events, suggesting that flecainide's effect in these cardiac cells was not via sodium channels blocking. A reverse-mode Na+/Ca2+exchanger (NCX) inhibitor, KB-R7943, was also found to suppress the irregular Ca2+ release, and whole-cell voltage clamping of isolated guinea-pig cardiac ventricular myocytes confirmed that flecainide could directly affect the NCX current (INCX). ATS-iPSC-derived cardiomyocytes recapitulate abnormal electrophysiological phenotypes and flecainide suppresses the arrhythmic events through the modulation of INCX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号