首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.  相似文献   

2.
Dopamine is a neurotransmitter that plays a major role in a variety of brain functions, as well as in disorders such as Parkinson disease and schizophrenia. In cultured astrocytes, we have found that dopamine induces sporadic cytoplasmic calcium ([Ca2+]c) signals. Importantly, we show that the dopamine-induced calcium signaling is receptor-independent in midbrain, cortical, and hippocampal astrocytes. We demonstrate that the calcium signal is initiated by the metabolism of dopamine by monoamine oxidase, which produces reactive oxygen species and induces lipid peroxidation. This stimulates the activation of phospholipase C and subsequent release of calcium from the endoplasmic reticulum via the inositol 1,4,5-trisphosphate receptor mechanism. These findings have major implications on the function of astrocytes that are exposed to dopamine and may contribute to understanding the physiological role of dopamine.  相似文献   

3.
Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca2+ dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca2+ depending on cellular activity. Resting intracellular calcium ([Ca2+]r) and sodium ([Na+]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na+]e elevates [Ca2+]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca2+ or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca2+]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca2+]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca2+]r in MHS muscle fibers and decreases the amplitude of [Ca2+]r rise triggered by halothane, but had no effect on [Ca2+]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca2+ transient elicited by high [K+]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca2+]r and the Ca2+ transient area induced by high [K+]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca2+ transients associated with K+-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers.  相似文献   

4.
Angiotensin II (ANG II) stimulates renal tubular reabsorption of NaCl by targeting Na+/H+ exchanger NHE3. We have shown previously that inositol 1,4,5-triphosphate receptor-binding protein released with inositol 1,4,5-triphosphate (IRBIT) plays a critical role in stimulation of NHE3 in response to elevated intracellular Ca2+ concentration ([Ca2+]i). In this study, we investigated the role of IRBIT in mediating NHE3 activation by ANG II. IRBIT is abundantly expressed in the proximal tubules where NHE3 is located. ANG II at physiological concentrations stimulates NHE3 transport activity in a model proximal tubule cell line. ANG II-induced activation of NHE3 was abrogated by knockdown of IRBIT, whereas overexpression of IRBIT enhanced the effect of ANG II on NHE3. ANG II transiently increased binding of IRBIT to NHE3 at 5 min but became dissociated by 45 min. In comparison, it took at least 15 min of ANG II treatment for an increase in NHE3 activity and NHE3 surface expression. The stimulation of NHE3 by ANG II was dependent on changes in [Ca2+]i and Ca2+/calmodulin-dependent protein kinases II. Inhibition of CaMKII completely blocked the ANG II-induced binding of IRBIT to NHE3 and the increase in NHE3 surface abundance. Several serine residues of IRBIT are thought to be important for IRBIT binding. Mutations of Ser-68, Ser-71, and Ser-74 of IRBIT decreased binding of IRBIT to NHE3 and its effect on NHE3 activity. In conclusion, our current findings demonstrate that IRBIT is critically involved in mediating activation of NHE3 by ANG II via a Ca2+/calmodulin-dependent protein kinases II-dependent pathway.  相似文献   

5.
The Na(+)/Ca(2+) exchanger (NCX) is a membrane protein, which catalyzes the counter transport of Na(+) and Ca(2+) ions across the plasma membrane, playing a key role in the maintenance of the intracellular Ca(2+) homeostasis in various cell types. NCX consists of a transmembrane part and a large intracellular loop. The activation of the NCX transport function requires the binding of Ca(2+) to two tandem C2 domains, CBD1 and CBD2, which are an integral part of the exchanger's intracellular loop. Although high-resolution structures of individual CBD1 and CBD2 are available, their interdomain structure and dynamics and the atomic level mechanism of allosteric Ca(2+)-regulation remains unknown. Here, we use solution NMR spectroscopy to study the interdomain dynamics of CBD12, a 32 kDa construct that contains both the CBD1 and CBD2 domains connected by a short linker. Analysis of NMR residual dipolar couplings shows that CBD12 assumes on average an elongated shape both in the absence and in the presence of Ca(2+). NMR (15)N relaxation data of the Apo state indicate that the two domains sample a wide range of relative arrangements on the nanosecond time scale. These arrangements comprise significantly non-linear interdomain orientations. Binding of Ca(2+) to CBD1 significantly restricts the interdomain flexibility, stabilizing a more rigid elongated conformation. These findings suggest a molecular mechanism for the role of CBD12 in the function of NCX.  相似文献   

6.
Pyk2 was identified as a Ca2+-dependent kinase, however, the regulation of Pyk2 by Ca2+ in T cells remains controversial. We found that Ca2+ mobilization preferentially induced Pyk2 phosphorylation in cytotoxic T lymphocytes (CTL). Furthermore, Pyk2 phosphorylation in CTL was not absolutely Ca2+ dependent but relied on the strength of T cell receptor stimulation. Ionomycin-stimulated Pyk2 phosphorylation did not require calmodulin activity, because phosphorylation was not inhibited by the calmodulin inhibitor W7, and we detected no Ca2+-regulated association between Pyk2 and calmodulin. Ca2+-stimulated Pyk2 phosphorylation was dependent on Src-family kinase activity, even at the Pyk2 autophosphorylation site. We sought to identify a Ca2+-regulated pathway that could trigger Pyk2 phosphorylation in T cells and found that ionomycin stimulated the production of reactive oxygen species and an H2O2 scavenger inhibited ionomycin-induced Pyk2 phosphorylation. Additionally, H2O2 induced strong Erk activation and ionomycin-stimulated Pyk2 phosphorylation was Erk dependent. These data support the conclusion that Ca2+ mobilization induces the production of reactive oxygen species, which in turn activate the Erk pathway, leading to Src-family kinase-dependent Pyk2 phosphorylation. Our data demonstrate that Pyk2 is not a Ca2+-dependent kinase in T cells but instead, increased intracellular Ca2+ induces Pyk2 phosphorylation through production of reactive oxygen species. These findings are consistent with the possibility that Pyk2 acts as an early sensor of numerous extracellular signals that trigger a Ca2+ flux and/or reactive oxygen species to amplify tyrosine phosphorylation signaling events.  相似文献   

7.
Na+/Ca2+ exchangers (NCX) constitute a major Ca2+ export system that facilitates the re-establishment of cytosolic Ca2+ levels in many tissues. Ca2+ interactions at its Ca2+ binding domains (CBD1 and CBD2) are essential for the allosteric regulation of Na+/Ca2+ exchange activity. The structure of the Ca2+-bound form of CBD1, the primary Ca2+ sensor from canine NCX1, but not the Ca2+-free form, has been reported, although the molecular mechanism of Ca2+ regulation remains unclear. Here, we report crystal structures for three distinct Ca2+ binding states of CBD1 from CALX, a Na+/Ca2+ exchanger found in Drosophila sensory neurons. The fully Ca2+-bound CALX-CBD1 structure shows that four Ca2+ atoms bind at identical Ca2+ binding sites as those found in NCX1 and that the partial Ca2+ occupancy and apoform structures exhibit progressive conformational transitions, indicating incremental regulation of CALX exchange by successive Ca2+ binding at CBD1. The structures also predict that the primary Ca2+ pair plays the main role in triggering functional conformational changes. Confirming this prediction, mutagenesis of Glu455, which coordinates the primary Ca2+ pair, produces dramatic reductions of the regulatory Ca2+ affinity for exchange current, whereas mutagenesis of Glu520, which coordinates the secondary Ca2+ pair, has much smaller effects. Furthermore, our structures indicate that Ca2+ binding only enhances the stability of the Ca2+ binding site of CBD1 near the hinge region while the overall structure of CBD1 remains largely unaffected, implying that the Ca2+ regulatory function of CBD1, and possibly that for the entire NCX family, is mediated through domain interactions between CBD1 and the adjacent CBD2 at this hinge.  相似文献   

8.
In mammalian skeletal muscle, Ca2+ release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca2+-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca2+ channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in “hot spot” regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues.  相似文献   

9.
Oxidative stress and persistent DNA damage response contribute to cellular senescence, a degeneration process critically involving ataxia telangiectasia-mutated (ATM) and p53. Selenoprotein H (SelH), a nuclear selenoprotein, is proposed to carry redox and transactivation domains. To determine the role of SelH in genome maintenance, shRNA knockdown was employed in human normal and immortalized cell lines. SelH shRNA MRC-5 diploid fibroblasts under ambient O2 displayed a distinct profile of senescence including β-galactosidase expression, autofluorescence, growth inhibition, and ATM pathway activation. Such senescence phenotypes were alleviated in the presence of ATM kinase inhibitors, by p53 shRNA knockdown, or by maintaining the cells under 3% O2. During the course of 5-day recovery, the induction of phospho-ATM on Ser-1981 and γH2AX by H2O2 treatment (20 μm) subsided in scrambled shRNA but exacerbated in SelH shRNA MRC-5 cells. Results from clonogenic assays demonstrated hypersensitivity of SelH shRNA HeLa cells to paraquat and H2O2, but not to hydroxyurea, neocarzinostatin, or camptothecin. While SelH mRNA expression was induced by H2O2 treatment, SelH-GFP did not mobilize to sites of oxidative DNA damage. The glutathione level was lower in SelH shRNA than scrambled shRNA HeLa cells, and the H2O2-induced cell death was rescued in the presence of N-acetylcysteine, a glutathione precursor. Altogether, SelH protects against cellular senescence to oxidative stress through a genome maintenance pathway involving ATM and p53.  相似文献   

10.
11.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na+ overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na+/H+ exchanger isoform 1) in dendrites presents a major pathway for Na+ overload. Neuronal dendrites exhibited higher pHi regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70–200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na+i accumulation, swelling, and a concurrent loss of Ca2+i homeostasis. The Ca2+i overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na+/Ca2+ exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca2+ homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na+ entry and subsequent Na+/Ca2+ exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.  相似文献   

12.
This study examined the effect of H2O2 on the TRPC6 channel and its underlying mechanisms using a TRPC6 heterologous expression system. In TRPC6-expressing HEK293T cells, H2O2 significantly stimulated Ca2+ entry in a dose-dependent manner. Electrophysiological experiments showed that H2O2 significantly increased TRPC6 channel open probability and whole-cell currents. H2O2 also evoked a robust inward current in A7r5 vascular smooth muscle cells, which was nearly abolished by knockdown of TRPC6 using a small interfering RNA. Catalase substantially attenuated arginine vasopressin (AVP)-induced Ca2+ entry in cells co-transfected with TRPC6 and AVP V1 receptor. N-Ethylmaleimide and thimerosal were able to simulate the H2O2 response. Dithiothreitol or glutathione-reduced ethyl ester significantly antagonized the response. Furthermore, both N-ethylmaleimide- and H2O2-induced TRPC6 activations were only observed in the cell-attached patches but not in the inside-out patches. Moreover, 1-oleoyl-2-acetyl-sn-glycerol effect on TRPC6 was significantly greater in the presence of H2O2. Biotinylation assays revealed a significant increase in cell surface TRPC6 in response to H2O2. Similarly, in cells transfected with TRPC6-EGFP, confocal microscopy showed a significant increase in fluorescence intensity in the region of the cell membrane and adjacent to the membrane. AVP also increased the fluorescence intensity on the surface of the cells co-transfected with TRPC6-EGFP and V1 receptor, and this response was inhibited by catalase. These data indicate that H2O2 activates TRPC6 channels via modification of thiol groups of intracellular proteins. This cysteine oxidation-dependent pathway not only stimulates the TRPC6 channel by itself but also sensitizes the channels to diacylglycerol and promotes TRPC6 trafficking to the cell surface.  相似文献   

13.
Isoform 3 of the Na+-Ca2+ exchanger (NCX3) is crucial for maintaining intracellular calcium ([Ca2+]i) homeostasis in excitable tissues. In this sense NCX3 plays a key role in neuronal excitotoxicity and Ca2+ extrusion during skeletal muscle relaxation. Alternative splicing generates two variants (NCX3-AC and NCX3-B). Here, we demonstrated that NCX3 variants display a tissue-specific distribution in mice, with NCX3-B as mostly expressed in brain and NCX-AC as predominant in skeletal muscle. Using Fura-2-based Ca2+ imaging, we measured the capacity and regulation of the two variants during Ca2+ extrusion and uptake in different conditions. Functional studies revealed that, although both variants are activated by intracellular sodium ([Na+]i), NCX3-AC has a higher [Na+]i sensitivity, as Ca2+ influx is observed in the presence of extracellular Na+. This effect could be partially mimicked for NCX3-B by mutating several glutamate residues in its cytoplasmic loop. In addition, NCX3-AC displayed a higher capacity of both Ca2+ extrusion and uptake compared with NCX3-B, together with an increased sensitivity to intracellular Ca2+. Strikingly, substitution of Glu580 in NCX3-B with its NCX3-AC equivalent Lys580 recapitulated the functional properties of NCX3-AC regarding Ca2+ sensitivity, Lys580 presumably acting through a structure stabilization of the Ca2+ binding site. The higher Ca2+ uptake capacity of NCX3-AC compared with NCX3-B is in line with the necessity to restore Ca2+ levels in the sarcoplasmic reticulum during prolonged exercise. The latter result, consistent with the high expression in the slow-twitch muscle, suggests that this variant may contribute to the Ca2+ handling beyond that of extruding Ca2+.  相似文献   

14.
Mitochondrial superoxide flashes reflect a quantal, bursting mode of reactive oxygen species (ROS) production that arises from stochastic, transient opening of the mitochondrial permeability transition pore (mPTP) in many types of cells and in living animals. However, the regulatory mechanisms and the exact nature of the flash-coupled mPTP remain poorly understood. Here we demonstrate a profound synergistic effect between mitochondrial Ca2+ uniport and elevated basal ROS production in triggering superoxide flashes in intact cells. Hyperosmotic stress potently augmented the flash activity while simultaneously elevating mitochondrial Ca2+ and ROS. Blocking mitochondrial Ca2+ transport by knockdown of MICU1 or MCU, newly identified components of the mitochondrial Ca2+ uniporter, or scavenging mitochondrial basal ROS markedly diminished the flash response. More importantly, whereas elevating Ca2+ or ROS production alone was inefficacious in triggering the flashes, concurrent physiological Ca2+ and ROS elevation served as the most powerful flash activator, increasing the flash incidence by an order of magnitude. Functionally, superoxide flashes in response to hyperosmotic stress participated in the activation of JNK and p38. Thus, physiological levels of mitochondrial Ca2+ and ROS synergistically regulate stochastic mPTP opening and quantal ROS production in intact cells, marking the flash as a coincidence detector of mitochondrial Ca2+ and ROS signals.  相似文献   

15.
Collapsin response mediator protein 2 (CRMP2) is traditionally viewed as an axonal growth protein involved in axon/dendrite specification. Here, we describe novel functions of CRMP2. A 15-amino acid peptide from CRMP2, fused to the TAT cell-penetrating motif of the HIV-1 protein, TAT-CBD3, but not CBD3 without TAT, attenuated N-methyl-d-aspartate receptor (NMDAR) activity and protected neurons against glutamate-induced Ca2+ dysregulation, suggesting the key contribution of CRMP2 in these processes. In addition, TAT-CBD3, but not CBD3 without TAT or TAT-scramble peptide, inhibited increases in cytosolic Ca2+ mediated by the plasmalemmal Na+/Ca2+ exchanger (NCX) operating in the reverse mode. Co-immunoprecipitation experiments revealed an interaction between CRMP2 and NMDAR as well as NCX3 but not NCX1. TAT-CBD3 disrupted CRMP2-NMDAR interaction without change in NMDAR localization. In contrast, TAT-CBD3 augmented the CRMP2-NCX3 co-immunoprecipitation, indicating increased interaction or stabilization of a complex between these proteins. Immunostaining with an anti-NCX3 antibody revealed that TAT-CBD3 induced NCX3 internalization, suggesting that both reverse and forward modes of NCX might be affected. Indeed, the forward mode of NCX, evaluated in experiments with ionomycin-induced Ca2+ influx into neurons, was strongly suppressed by TAT-CBD3. Knockdown of CRMP2 with short interfering RNA (siRNA) prevented NCX3 internalization in response to TAT-CBD3 exposure. Moreover, CRMP2 down-regulation strongly attenuated TAT-CBD3-induced inhibition of reverse NCX. Overall, our results demonstrate that CRMP2 interacts with NCX and NMDAR and that TAT-CBD3 protects against glutamate-induced Ca2+ dysregulation most likely via suppression of both NMDAR and NCX activities. Our results further clarify the mechanism of action of TAT-CBD3 and identify a novel regulatory checkpoint for NMDAR and NCX function based on CRMP2 interaction with these proteins.  相似文献   

16.
Cancer cells are characterized by elevated levels of reactive oxygen species, which are produced mainly by the mitochondria. The dismutase SOD2 localizes in the matrix and is a major antioxidant. The activity of SOD2 is regulated by the deacetylase SIRT3. Recent studies indicated that SIRT3 is decreased in 87% of breast cancers, implying that the activity of SOD2 is compromised. The resulting elevation in reactive oxygen species was shown to be essential for the metabolic reprograming toward glycolysis. Here, we show that SOD2 itself is down-regulated in breast cancer cell lines. Further, activation of oncogenes, such as Ras, promotes the rapid down-regulation of SOD2. Because in the absence of SOD2, superoxide levels are elevated in the matrix, we reasoned that mechanisms must exist to retain low levels of superoxide in other cellular compartments especially in the intermembrane space of the mitochondrial to avoid irreversible damage. The dismutase SOD1 also acts as an antioxidant, but it localizes to the cytoplasm and the intermembrane space of the mitochondria. We report here that loss of SOD2 correlates with the overexpression of SOD1. Further, we show that mitochondrial SOD1 is the main dismutase activity in breast cancer cells but not in non-transformed cells. In addition, we show that the SOD1 inhibitor LCS-1 leads to a drastic fragmentation and swelling of the matrix, suggesting that in the absence of SOD2, SOD1 is required to maintain the integrity of the organelle. We propose that by analogy to the cadherin switch during epithelial-mesenchymal transition, cancer cells also undergo a SOD switch during transformation.  相似文献   

17.
Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H+-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na+/H+ exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.  相似文献   

18.
Long-lasting mitochondrial permeability transition pore (mPTP) openings damage mitochondria, but transient mPTP openings protect against chronic cardiac stress. To probe the mechanism, we subjected isolated cardiac mitochondria to gradual Ca(2+) loading, which, in the absence of BSA, induced long-lasting mPTP opening, causing matrix depolarization. However, with BSA present to mimic cytoplasmic fatty acid-binding proteins, the mitochondrial population remained polarized and functional, even after matrix Ca(2+) release caused an extramitochondrial free [Ca(2+)] increase to >10 μM, unless mPTP openings were inhibited. These findings could be explained by asynchronous transient mPTP openings allowing individual mitochondria to depolarize long enough to flush accumulated matrix Ca(2+) and then to repolarize rapidly after pore closure. Because subsequent matrix Ca(2+) reuptake via the Ca(2+) uniporter is estimated to be >100-fold slower than matrix Ca(2+) release via mPTP, only a tiny fraction of mitochondria (<1%) are depolarized at any given time. Our results show that transient mPTP openings allow cardiac mitochondria to defend themselves collectively against elevated cytoplasmic Ca(2+) levels as long as respiratory chain activity is able to balance proton influx with proton pumping. We found that transient mPTP openings also stimulated reactive oxygen species production, which may engage reactive oxygen species-dependent cardioprotective signaling.  相似文献   

19.
Protein kinase C (PKC) is considered crucial for hormonal Na+/H+ exchanger (NHE1) activation because phorbol esters (PEs) strongly activate NHE1. However, here we report that rather than PKC, direct binding of PEs/diacylglycerol to the NHE1 lipid-interacting domain (LID) and the subsequent tighter association of LID with the plasma membrane mainly underlies NHE1 activation. We show that (i) PEs directly interact with the LID of NHE1 in vitro, (ii) like PKC, green fluorescent protein (GFP)-labeled LID translocates to the plasma membrane in response to PEs and receptor agonists, (iii) LID mutations markedly inhibit these interactions and PE/receptor agonist-induced NHE1 activation, and (iv) PKC inhibitors ineffectively block NHE1 activation, except staurosporin, which itself inhibits NHE1 via LID. Thus, we propose a PKC-independent mechanism of NHE1 regulation via a PE-binding motif previously unrecognized.  相似文献   

20.
Ionic signalling is the most ancient form of regulation of cellular functions in response to environmental challenges. Signals, mediated by Na+ fluxes and spatio-temporal fluctuations of Na+ concentration in cellular organelles and cellular compartments contribute to the most fundamental cellular processes such as membrane excitability and energy production. At the very core of ionic signalling lies the Na+-K+ ATP-driven pump (or NKA) which creates trans-plasmalemmal ion gradients that sustain ionic fluxes through ion channels and numerous Na+-dependent transporters that maintain cellular and tissue homeostasis. Here we present a brief account of the history of research into NKA, Na+ -dependent transporters and Na+ signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号