首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.

Purpose

Exosomal microRNAs (miRNAs) have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC). To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined.

Experimental Design

Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA) using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients.

Results

The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a) were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis.

Conclusion

Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and several miRNAs are promising biomarkers for non-invasive diagnosis of the disease.  相似文献   

3.
4.

Background

Sensitive and specific detection of liver cirrhosis is an urgent need for optimal individualized management of disease activity. Substantial studies have identified circulation miRNAs as biomarkers for diverse diseases including chronic liver diseases. In this study, we investigated the plasma miRNA signature to serve as a potential diagnostic biomarker for silent liver cirrhosis.

Methods

A genome-wide miRNA microarray was first performed in 80 plasma specimens. Six candidate miRNAs were selected and then trained in CHB-related cirrhosis and controls by qPCR. A classifier, miR-106b and miR-181b, was validated finally in two independent cohorts including CHB-related silent cirrhosis and controls, as well as non−CHB-related cirrhosis and controls as validation sets, respectively.

Results

A profile of 2 miRNAs (miR-106b and miR-181b) was identified as liver cirrhosis biomarkers irrespective of etiology. The classifier constructed by the two miRNAs provided a high diagnostic accuracy for cirrhosis (AUC = 0.882 for CHB-related cirrhosis in the training set, 0.774 for CHB-related silent cirrhosis in one validation set, and 0.915 for non−CHB-related cirrhosis in another validation set).

Conclusion

Our study demonstrated that the combined detection of miR-106b and miR-181b has a considerable clinical value to diagnose patients with liver cirrhosis, especially those at early stage.  相似文献   

5.

Background

MicroRNAs (miRNAs) play key roles in diverse biological and pathological processes, including the regulation of proliferation, apoptosis, angiogenesis and cellular differentiation. Recently, circulating miRNAs have been reported as potential biomarkers for various pathologic conditions. This study investigated miR-30a, miR-195 and let-7b as potential of biomarker for acute myocardial infarction (AMI).

Methods and Results

Plasma samples from 18 patients with AMI and 30 healthy adults were collected. Total RNA was extracted from plasma with TRIzol LS Reagent. MiRNA levels and plasma cardiac troponin I (cTnI) concentrations were measured by quantitative real-time PCR and ELISA assay, respectively. Results showed that circulating miR-30a in AMI patients was highly expressed at 4 h, 8 h and 12 h after onset of AMI, and miR-195 was highly expressed at 8 h and 12 h. However, let-7b was lower in AMI patients than in controls throughout the whole time points. Interestingly, in these patients, circulating miR-30a, miR-195 and let-7b all reached their expression peak at 8 h. By the receiver operating characteristic (ROC) curve analyses, these plasma miRNAs were of significant diagnostic value for AMI. The combined ROC analysis revealed the an AUC value of 0.93 with 94% sensitivity and 90% specificity at 8 h after onset, and an AUC value of 0.92 with 90% sensitivity and 90% specificity at 12 h after onset, in discriminating the AMI patients from healthy controls.

Conclusions

Our results imply that the plasma concentration of miR-30a, miR-195 and let-7b can be potential indicators for AMI.  相似文献   

6.
7.

Background

Lipopolysaccharide (LPS) is recognized as the most potent microbial mediator presaging the threat of invasion of Gram-negative bacteria that implicated in the pathogenesis of sepsis and septic shock. This study was designed to examine the microRNA (miRNA) expression in whole blood from mice injected with intraperitoneal LPS.

Methods

C57BL/6 mice received intraperitoneal injections of varying concentrations (range, 10–1000 μg) of LPS from different bacteria, including Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens and were killed 2, 6, 24, and 72 h after LPS injection. Whole blood samples were obtained and tissues, including lung, brain, liver, and spleen, were harvested for miRNA expression analysis using an miRNA array (Phalanx miRNA OneArray® 1.0). Upregulated expression of miRNA targets in the whole blood of C57BL/6 and Tlr4−/− mice injected with LPS was quantified using real-time RT-PCR and compared with that in the whole blood of C57BL/6 mice injected with lipoteichoic acid (LTA) from Staphylococcus aureus.

Results

Following LPS injection, a significant increase of 15 miRNAs was observed in the whole blood. Among them, only 3 miRNAs showed up-regulated expression in the lung, but no miRNAs showed a high expression level in the other examined tissues. Upregulated expression of the miRNA targets (let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107 and miR-451) following LPS injection on real-time RT-PCR was dose- and time-dependent. miRNA induction occurred after 2 h and persisted for at least 6 h. Exposure to LPS from different bacteria did not induce significantly different expression of these miRNA targets. Additionally, significantly lower expression levels of let-7d, miR-25, miR-92a, miR-103, and miR-107 were observed in whole blood of Tlr4−/− mice. In contrast, LTA exposure induced moderate expression of miR-451 but not of the other 7 miRNA targets.

Conclusions

We identified a specific whole blood–derived miRNA signature in mice exposed to LPS, but not to LTA, from different gram-negative bacteria. These whole blood-derived miRNAs are promising as biomarkers for LPS exposure.  相似文献   

8.
Q Wang  Z Huang  S Ni  X Xiao  Q Xu  L Wang  D Huang  C Tan  W Sheng  X Du 《PloS one》2012,7(9):e44398

Background

Colorectal cancer (CRC) is a major cause of death worldwide. Sensitive, non-invasive diagnostic screen methods are urgently needed to improve its survival rates. Stable circulating microRNA offers unique opportunities for the early diagnosis of several diseases, including cancers. Our aim has been to find new plasma miRNAs that can be used as biomarkers for the detection of CRC.

Methodology/Principal Findings

According to the results of miRNA profiling performed on pooling plasma samples form 10 CRC patients or 10 healthy controls, a panel of miRNAs (hsa-miR-10a, -19a, -22*, -24, -92a, 125a-5p, -141, -150, -188-3p, -192, -210, -221, -224*, -376a, -425*, -495, -572, -601, -720, -760 and hsa-let-7a, -7e) were deregulated in CRC plasma with fold changes >5. After large scale validation by qRT-PCR performed on another 191 independent individuals (90 CRC, 43 advanced adenoma and 58 healthy participants), we found that the levels of plasma miR-601 and miR-760 were significantly decreased in colorectal neoplasia (carcinomas and advanced adenomas) compared with healthy controls. ROC curve analysis showed that plasma miR-601 and miR-760 were of significant diagnostic value for advanced neoplasia. These two miRNAs together yield an AUC of 0.792 with 83.3% sensitivity and 69.1% specificity for separating CRC from normal controls, and yield an AUC of 0.683 with 72.1% sensitivity and 62.1% specificity in discriminating advanced adenomas from normal controls.

Conclusions/Significance

Plasma miR-601 and miR-760 can potentially serve as promising non-invasive biomarkers for the early detection of CRC.  相似文献   

9.

Background and Aims

Cholangiocarcinoma (CCA) is highly resistant to chemotherapy, including gemcitabine (Gem) treatment. MicroRNAs (miRNAs) are endogenous, non-coding, short RNAs that can regulate multiple genes expression. Some miRNAs play important roles in the chemosensitivity of tumors. Here, we examined the relationship between miRNA expression and the sensitivity of CCA cells to Gem.

Methods

Microarray analysis was used to determine the miRNA expression profiles of two CCA cell lines, HuH28 and HuCCT1. To determine the effect of candidate miRNAs on Gem sensitivity, expression of each candidate miRNA was modified via either transfection of a miRNA mimic or transfection of an anti-oligonucleotide. Ontology-based programs were used to identify potential target genes of candidate miRNAs that were confirmed to affect the Gem sensitivity of CCA cells.

Results

HuCCT1 cells were more sensitive to Gem than were HuH28 cells, and 18 miRNAs were differentially expressed whose ratios over ± 2log2 between HuH28 and HuCCT1. Among these 18 miRNAs, ectopic overexpression of each of three downregulated miRNAs in HuH28 (miR-29b, miR-205, miR-221) restored Gem sensitivity to HuH28. Suppression of one upregulated miRNA in HuH28, miR-125a-5p, inhibited HuH28 cell proliferation independently to Gem treatment. Selective siRNA-mediated downregulation of either of two software-predicted targets, PIK3R1 (target of miR-29b and miR-221) or MMP-2 (target of miR-29b), also conferred Gem sensitivity to HuH28.

Conclusions

miRNA expression profiling was used to identify key miRNAs that regulate Gem sensitivity in CCA cells, and software that predicts miRNA targets was used to identify promising target genes for anti-tumor therapies.  相似文献   

10.

Purpose

microRNAs have emerged as key regulators of gene expression, and their altered expression has been associated with tumorigenesis and tumor progression. Thus, microRNAs have potential as both cancer biomarkers and/or potential novel therapeutic targets. Although accumulating evidence suggests the role of aberrant microRNA expression in endometrial carcinogenesis, there are still limited data available about the prognostic significance of microRNAs in endometrial cancer. The goal of this study is to investigate the prognostic value of selected key microRNAs in endometrial cancer by the analysis of archival formalin-fixed paraffin-embedded tissues.

Experimental Design

Total RNAs were extracted from 48 paired normal and endometrial tumor specimens using Trizol based approach. The expression of miR-26a, let-7g, miR-21, miR-181b, miR-200c, miR-192, miR-215, miR-200c, and miR-205 were quantified by real time qRT-PCR expression analysis. Targets of the differentially expressed miRNAs were quantified using immunohistochemistry. Statistical analysis was performed by GraphPad Prism 5.0.

Results

The expression levels of miR-200c (P<0.0001) and miR-205 (P<0.0001) were significantly increased in endometrial tumors compared to normal tissues. Kaplan-Meier survival analysis revealed that high levels of miR-205 expression were associated with poor patient overall survival (hazard ratio, 0.377; Logrank test, P = 0.028). Furthermore, decreased expression of a miR-205 target PTEN was detected in endometrial cancer tissues compared to normal tissues.

Conclusion

miR-205 holds a unique potential as a prognostic biomarker in endometrial cancer.  相似文献   

11.

Background

The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer.

Results

We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein.

Conclusions

Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.  相似文献   

12.

Background

MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of >30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC.

Methods

TaqMan® qRT-PCR arrays and individual assays were used to profile miRNA expression in a panel of 25 tumors with matched adjacent tissues from patients with OSCC, and 8 control paired oral stroma and epithelium from healthy volunteers. Associated DNA methylation changes of candidate epigenetically deregulated miRNA genes were measured in the same samples using the MassArray® mass spectrometry platform. MiRNA expression and DNA methylation changes were also investigated in FACS sorted CD44high oral cancer stem cells from primary tumor samples (CSCs), and in oral rinse and saliva from 15 OSCC patients and 7 healthy volunteers.

Results

MiRNA expression patterns were consistent in healthy oral epithelium and stroma, but broadly altered in both tumor and adjacent tissue from OSCC patients. MiR-375 is repressed and miR-127 activated in OSCC, and we confirm previous reports of miR-137 hypermethylation in oral cancer. The miR-200 s/miR-205 were epigenetically activated in tumors vs normal tissues, but repressed in the absence of DNA hypermethylation specifically in CD44high oral CSCs. Aberrant miR-375 and miR-200a expression and miR-200c-141 methylation could be detected in and distinguish OSCC patient oral rinse and saliva from healthy volunteers, suggesting a potential clinical application for OSCC specific miRNA signatures in oral fluids.

Conclusions

MiRNA expression and DNA methylation changes are a common event in OSCC, and we suggest miR-375, miR-127, miR-137, the miR-200 family and miR-205 as promising candidates for future investigations. Although overall activated in OSCC, miR-200/miR-205 suppression in oral CSCs indicate that cell specific silencing of these miRNAs may drive tumor expansion and progression.  相似文献   

13.
14.

Background and Aim

Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of miRNA expression and oncogenic pathways.

Methods

Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between cancer types and miRNAs was performed.

Results

The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246 in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers.

Conclusion

MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could play a role in tumor pathogenesis.  相似文献   

15.

Introduction

We have examined expression of microRNAs (miRNAs) in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers.

Materials and Methods

We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT) and paraffin-embedded specimens (FFPE). We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features.

Results

We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367) that strongly correlate to overall survival.

Conclusion

We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas.  相似文献   

16.

Background

Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile.

Results

We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive.

Conclusions

Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1503-7) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
19.
20.

Background

We previously showed microRNAs (miRNAs) in plasma are potential biomarkers for colorectal cancer detection. Here, we aimed to develop specific blood-based miRNA assay for breast cancer detection.

Methodology/Principal Findings

TaqMan-based miRNA profiling was performed in tumor, adjacent non-tumor, corresponding plasma from breast cancer patients, and plasma from matched healthy controls. All putative markers identified were verified in a training set of breast cancer patients. Selected markers were validated in a case-control cohort of 170 breast cancer patients, 100 controls, and 95 other types of cancers and then blindly validated in an independent set of 70 breast cancer patients and 50 healthy controls. Profiling results showed 8 miRNAs were concordantly up-regulated and 1 miRNA was concordantly down-regulated in both plasma and tumor tissue of breast cancer patients. Of the 8 up-regulated miRNAs, only 3 were significantly elevated (p<0.0001) before surgery and reduced after surgery in the training set. Results from the validation cohort showed that a combination of miR-145 and miR-451 was the best biomarker (p<0.0001) in discriminating breast cancer from healthy controls and all other types of cancers. In the blind validation, these plasma markers yielded Receiver Operating Characteristic (ROC) curve area of 0.931. The positive predictive value was 88% and the negative predictive value was 92%. Altered levels of these miRNAs in plasma have been detected not only in advanced stages but also early stages of tumors. The positive predictive value for ductal carcinoma in situ (DCIS) cases was 96%.

Conclusions

These results suggested that these circulating miRNAs could be a potential specific biomarker for breast cancer screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号