首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging.  相似文献   

2.
PurposeConventional x-ray spectrum estimation methods from transmission measurement often lead to inaccurate results when extensive x-ray scatter is present in the measured projection. This study aims to apply the weighted L1-norm scatter correction algorithm in spectrum estimation for reducing residual differences between the estimated and true spectrum.MethodThe scatter correction algorithm is based on a simple radiographic scattering model where the intensity of scattered x-ray is directly estimated from a transmission measurement. Then, the scatter-corrected measurement is used for the spectrum estimation method that consists of deciding the weights of predefined spectra and representing the spectrum as a linear combination of the predefined spectra with the weights. The performances of the estimation method combined with scatter correction are evaluated on both simulated and experimental data.ResultsThe results show that the estimated spectra using the scatter-corrected projection nearly match the true spectra. The normalized-root-mean-square-error and the mean energy difference between the estimated spectra and corresponding true spectra are reduced from 5.8% and 1.33 keV without the scatter correction to 3.2% and 0.73 keV with the scatter correction for both simulation and experimental data, respectively.ConclusionsThe proposed method is more accurate for the acquisition of x-ray spectrum than the estimation method without scatter correction and the spectrum can be successfully estimated even the materials of the filters and their thicknesses are unknown. The proposed method has the potential to be used in several diagnostic x-ray imaging applications.  相似文献   

3.
It has been shown that the stepping to recover balance following a forward fall occurs at a constant time (on average 293 ms) (Do et al. Journal of Biomechanics 15, 1982, 933-939). In this study, we tested the hypothesis according to which programming to make fast movement could trigger the movement earlier than when programming self-pace movement. The same experimental paradigm of forward fall was used (see Do et al., 1982) to induce stepping. Different extents of stepping were manipulated by instructions: Subjects were instructed to step to recover their balance naturally (control condition); to make shorter steps than in the control condition; longer steps; faster steps. Lastly, a fast step was also induced by the biomechanical constraint on the initial posture, i.e. by inclining the subject forward at his maximum capacity. Data were collected from 12 subjects. The variables analyzed were the onset latency of step execution and other classical parameters (time of heel-contact, duration of the swing phase, step length, center of mass progression velocity, and step velocity). The results showed that the onset of stepping was unchanged in the longer- and faster-step conditions, relative to the control condition (mean control value = 280 ms). In contrast, the onset of stepping was significantly earlier in the short-step condition, and when the initial inclination was greater (250 and 252 ms, respectively). The swing phase duration in these two conditions averaged 140 and 185 ms, was significantly shorter than in the other conditions, whereas step length was obviously expected to be shorter in the shorter-step condition and longer in the longer-step condition than in the other conditions. Step length was similar between the other conditions. We conclude that neither step length or step velocity programming could induce an earlier onset latency of stepping. Step programming in relation to these specific instructions seemed to concern the extent of step execution and not the time of triggering of the stepping. We suggest that the control of short swing phase duration resulted in an earlier onset latency of stepping to recover the balance. This control depends on the combination of biomechanical constraints and cognitive processes, including subject's interpretation of the instructions and evaluation of the risk of fall.  相似文献   

4.
An inability to recover lateral balance with a single step is predictive of future falls in older adults. This study investigated if balance stability at first step lift-off (FSLO) would be different between multiple and single stepping responses to lateral perturbations. 54 healthy older adults received left and right waist-pulls at 5 different intensities (levels 1–5). Crossover stepping responses at and above intensity level 3 that induced both single and multiple steps were analyzed. Whole-body center of mass (COM) and center of pressure (COP) positions in the medio-lateral direction with respect to the base of support were calculated. An inverted pendulum model was used to define the lateral stability boundary, which was also adjusted using the COP position at FSLO (functional boundary). No significant differences were detected in the COP positions between the responses at FSLO (p  0.075), indicating no difference in the functional boundaries between the responses. Significantly smaller stability margins were observed at first step landing for multiple steps at all levels (p  0.024), while stability margins were also significantly smaller at FSLO for level 3 and 4 (p  0.048). These findings indicate that although reduced stability at first foot contact would be associated with taking additional steps, stepping responses could also be attributable to the COM motion state as early as first step lift-off, preceding foot contact. Perturbation-based training interventions aimed at improving the reactive control of stability would reduce initial balance instability at first step lift-off and possibly the consequent need for multiple steps in response to balance perturbations.  相似文献   

5.
Diagnostic imaging techniques play an important role in assessing the exact location, cause, and extent of a nerve lesion, thus allowing clinicians to diagnose and manage more effectively a variety of pathological conditions, such as entrapment syndromes, traumatic injuries, and space-occupying lesions. Ultrasound and nuclear magnetic resonance imaging are becoming useful methods for this purpose, but they still lack spatial resolution. In this regard, recent phase contrast x-ray imaging experiments of peripheral nerve allowed the visualization of each nerve fiber surrounded by its myelin sheath as clearly as optical microscopy. In the present study, we attempted to produce high-resolution x-ray phase contrast images of a human sciatic nerve by using synchrotron radiation propagation-based imaging. The images showed high contrast and high spatial resolution, allowing clear identification of each fascicle structure and surrounding connective tissue. The outstanding result is the detection of such structures by phase contrast x-ray tomography of a thick human sciatic nerve section. This may further enable the identification of diverse pathological patterns, such as Wallerian degeneration, hypertrophic neuropathy, inflammatory infiltration, leprosy neuropathy and amyloid deposits. To the best of our knowledge, this is the first successful phase contrast x-ray imaging experiment of a human peripheral nerve sample. Our long-term goal is to develop peripheral nerve imaging methods that could supersede biopsy procedures.  相似文献   

6.
Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV) measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.  相似文献   

7.
The aim of this study was to compare the physiological responses and energy cost between two ascending patterns, the single-step (SS) and the double-step (DS), in climbing a public staircase. In the SS pattern, a person climbs one step at a time whilst in the double-step (DS) pattern, the individual traverses two steps in a single stride. Advocates of each stepping pattern claimed that their type of ascent is physically more taxing and expends more calories. Thirty subjects (10 males and 20 females) climbed a typical 11-storey flat (each step height of 0.15 m, a total of 180 steps and a vertical displacement of 27.0 m). The subjects climbed using either the SS pattern at a tempo of 100 steps x min(-1) or the DS pattern at 50 steps x min(-1). The prescribed stepping frequencies ensured that an equal amount of total work was performed between the SS and DS patterns. The climbing patterns were performed in random order. Physiological measures during the last 30 s of the climbs were used in the comparative analysis. The results showed that ventilation, oxygen uptake and heart rate values were significantly higher (all p < 0.01) in the SS as compared to the DS pattern. However, the caloric expenditure during the SS pattern was calculated to be only marginally higher than the DS pattern. In conclusion, ascending with the SS pattern led to significantly higher physiological responses compared to the DS pattern. The higher calorie expended with the SS compared to the DS pattern was deemed to be of little practical significance.  相似文献   

8.
PurposeMicron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive three-dimensional imaging modality. We review recent developments and applications of micro-CT for preclinical research.MethodsBased on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the-art hardware and ongoing challenges and promising research directions in the field.ResultsRepresentative features of commercially available micro-CT scanners and some new applications for both in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to density variations in soft tissues than standard absorption imaging. We further review the impact of deep learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro-CT data, and we outline several challenges specific to micro-CT.ConclusionsAll of these advancements establish micro-CT imaging at the forefront of preclinical research, able to provide anatomical, functional, and even molecular information while serving as a testbench for translational research.  相似文献   

9.
Functional analysis of the shoulder girdle of cats during locomotion   总被引:1,自引:0,他引:1  
The movements of the shoulder girdle of eight adult cats during overground stepping were studied, using standard slow motion cinematographic techniques. The patterns of activity of shoulder muscles were examined, using simultaneous intramuscular electromyography. Walking, trotting and galloping steps were analyzed from digitized single motion picture frame images. Angular movements of the shoulder girdle consist of biphasic flexion and extension of the shoulder joint and a monophasic flexion-extension alternation of the scapula on the thorax during each step cycle. In addition, the center of the scapula moves craniad during the swing phase and caudad during the stance phase with respect to a fixed reference point on the animal. Similar vertical movements of the center of the scapula also occur in each step cycle. Results of EMG studies of the 17 muscles capable of acting on the shoulder girdle indicate that three overall patterns of activity are found: (1) a pattern typical of extensor muscles, active during all the extension epochs; (2) a pattern typical of flexor muscles, active during the flexion epoch; and (3) a biphasic pattern of activity, active twice in each step. There data are used, along with a re-examination of previous models of the mechanics of the shoulder girdle of carnivores to examine the function and mechanics of shoulder motion. It is concluded that the rotary and translatory movements of the shoulder girdle during stepping combine to enhance step length.  相似文献   

10.
The purposes of this study were: (1) to determine the frequency of protective stepping for balance recovery in subjects of different ages and fall-status, and (2) to compare predicted stepping based on a dynamic model (Pai and Patton, 1997. Journal of Biomechanics 30, 347–354) involving displacement and velocity combinations of the center of mass (COM) versus a static model based on displacement alone against experimentally induced stepping. Responses to three different magnitudes of forward waist pulls were recorded for 13 young, 18 older-non-fallers and 18 older-fallers. The COM phase plane trajectories derived from motion analysis were compared with the model-predicted threshold values for stepping. We found that the older fallers had the highest percentage of stepping trials (52%), followed by older-non-fallers (17.3%), and young (2.7%) at the lowest perturbation level. Younger subjects stepped less often than the elderly at the middle level. Everyone consistently stepped at the highest level of perturbation. Overall, the dynamic model showed better predictive capacity (65%) than the static model (5%) for estimating the initiation of stepping. Furthermore, the threshold for step initiation derived from the dynamic model could consistently predict when a step must occur. However, it was limited, especially among older fallers at the low perturbation level, in that it considered some steps ‘unnecessary’ that were presumably triggered by fear of falling or other factors.  相似文献   

11.
The aim of this paper is to provide evidence, both published and new, to support the notion that human infants are particularly good subjects for the study of the pattern generator for walking. We and others have shown that stepping can be initiated by sensory input from the legs or by general heightened excitability of the infant. New results are presented here to suggest that weight support through the feet and rapid extension of the legs are important proprioceptive inputs to initiate stepping. Our previous work has shown that infants can step at many different speeds when supported on a treadmill. The step cycle duration shortens as the speed increases, with the changes coming largely from the stance phase, just as in most other terrestrial animals. Moreover, we have shown that infants will step in all directions. Regardless of the direction of stepping, the step cycle changes in the same way with walking speed, suggesting the circuitry that controls different directions of walking share common elements. We have also shown that infant stepping is highly organized. Sensory inputs, whether proprioceptive or touch, are gated in a functional way so that only important sensory inputs generate a response. For example, touch to the lateral surface of the foot elicits a response only in sideways walking, and only in the leading limb. New data is presented here to show that the pattern generators from each limb can operate somewhat independently. On a split-belt treadmill with the 2 belts running at different speeds or in different directions, the legs showed considerable independence in behaviour. Yet, the pattern generators on each side interact to ensure that swing phase does not occur at the same time. These studies have provided insight into the organization of the pattern generator for walking in humans. It will be interesting in the future to study how maturation of the descending tracts changes walking behaviour to allow independent bipedal walking.  相似文献   

12.
Many biological machines function in discrete steps, and detection of such steps can provide insight into the machines’ dynamics. It is therefore crucial to develop an automated method to detect steps, and determine how its success is impaired by the significant noise usually present. A number of step detection methods have been used in previous studies, but their robustness and relative success rate have not been evaluated. Here, we compare the performance of four step detection methods on artificial benchmark data (simulating different data acquisition and stepping rates, as well as varying amounts of Gaussian noise). For each of the methods we investigate how to optimize performance both via parameter selection and via prefiltering of the data. While our analysis reveals that many of the tested methods have similar performance when optimized, we find that the method based on a chi-squared optimization procedure is simplest to optimize, and has excellent temporal resolution. Finally, we apply these step detection methods to the question of observed step sizes for cargoes moved by multiple kinesin motors in vitro. We conclude there is strong evidence for sub-8-nm steps of the cargo’s center of mass in our multiple motor records.  相似文献   

13.
Most hip fractures are thought to occur after falling during everyday activities. We speculated that hip fractures might also occur because of excessive loading of the hip joint during an unexpected misstep consequently leading to a fall. The aims of this study were to explore the kinematics and kinetics of the lower extremity joints during missteps as compared with regular stepping, as well as to compare the magnitude of forces acting upon the hip joint with the threshold forces expected to fracture the hip. Fourteen healthy adults performed two forward steps on a 17.8 cm high platform under the following four conditions: forward with and without vision, as well as a misstep (the box for the final step unexpectedly removed without participant awareness), and regular stepping down with eyes open. The results revealed no differences between stepping forward with and without vision. When compared with both stepping forward and regular stepping down, the misstep revealed altered joint positions accompanied by increased forces and moments acting upon the hip joint. For example, the peak vertical proximal thigh segment force was 3.05±0.55 BW vs. 1.23±0.14 BW and 0.91±0.09 BW (p<.001; misstep vs. regular stepping down and stepping forward, respectively), while the proximal thigh segment moment in frontal plane was 1.39±0.70 Nm/kg vs. 0.18±0.32 Nm/kg of adduction and 0.16±0.19 Nm/kg of abduction (p<.001). When compared with the literature data, the forces during misstep were within the range of those forces that could result in hip fractures in the elderly. Therefore, it may be possible for the elderly to experience hip/proximal femur fractures during missteps prior to falling.  相似文献   

14.
We studied the structural dynamics of chicken myosin V by combining the localization power of fluorescent imaging with one nanometer accuracy (FIONA) with the ability to detect angular changes of a fluorescent probe. The myosin V was labeled with bifunctional rhodamine on one of its calmodulin light chains. For every 74 nm translocation, the probe exhibited two reorientational motions, associated with alternating smaller and larger translational steps. Molecules previously identified as stepping alternatively 74-0 nm were found to actually step 64-10 nm. Additional tilting often occurred without full steps, possibly indicating flexibility of the attached myosin heads or probing of their vicinity. Processive myosin V molecules sometimes shifted from the top to the side of actin, possibly to avoid an obstacle. The data indicate marked adaptability of this molecular motor to a nonuniform local environment and provide strong support for a straight-neck model of myosin V in which the lever arm of the leading head is tilted backwards at the prepowerstoke angle.  相似文献   

15.
PurposeWithin the SYRMA-CT collaboration based at the ELETTRA synchrotron radiation (SR) facility the authors investigated the imaging performance of the phase-contrast computed tomography (CT) system dedicated to monochromatic in vivo 3D imaging of the female breast, for breast cancer diagnosis.MethodsTest objects were imaged at 38 keV using monochromatic SR and a high-resolution CdTe photon-counting detector. Signal and noise performance were evaluated using modulation transfer function (MTF) and noise power spectrum. The analysis was performed on the images obtained with the application of a phase retrieval algorithm as well as on those obtained without phase retrieval. The contrast to noise ratio (CNR) and the capability of detecting test microcalcification clusters and soft masses were investigated.ResultsFor a voxel size of (60 μm)3, images without phase retrieval showed higher spatial resolution (6.7 mm−1 at 10% MTF) than corresponding images with phase retrieval (2.5 mm−1). Phase retrieval produced a reduction of the noise level and an increase of the CNR by more than one order of magnitude, compared to raw phase-contrast images. Microcalcifications with a diameter down to 130 μm could be detected in both types of images.ConclusionsThe investigation on test objects indicates that breast CT with a monochromatic SR source is technically feasible in terms of spatial resolution, image noise and contrast, for in vivo 3D imaging with a dose comparable to that of two-view mammography. Images obtained with the phase retrieval algorithm showed the best performance in the trade-off between spatial resolution and image noise.  相似文献   

16.
Metasurfaces used in the manipulation of light beams have attracted growing interests owing to their unique electromagnetic properties in the subwavelength regime. However, most previously demonstrated single-layer metasurfaces are normally designed to realize one-fold function of either polarization or phase manipulation and suffer from low cross-polarization conversion efficiency and high-background, especially for transmissive metasurfaces. Here, a metasurface based on metal-insulator-metal (MIM) subwavelength grating is proposed to simultaneously achieve polarization filtering and phase controlling. The transmission coefficient reaches up to 78.9% and the polarization extinction ratio (ER = 20*log(T TM /T TE) is larger than 16.1 dB. A local abrupt phase difference covering 0–2π is introduced into transmitted light with the polarization direction vertical to the grating by artificially tailoring the geometrical parameters of MIM grating. Furthermore, background-free wavefront control and high-purity radial/azimuthal polarization are realized by the metasurfaces based on the MIM grating. This flexible and high-efficient scheme of full control wavefront and polarization promises an unprecedented progress of spatial vectorial beams modulation and enable the realization of novel optical components.  相似文献   

17.
Phragmoplast-associated kinesin-related protein 2 (PAKRP2) is an orphan kinesin in Arabidopsis thaliana that is thought to transport vesicles along phragmoplast microtubules for cell plate formation. Here, using single-molecule fluorescence microscopy, we show that PAKRP2 is the first orphan kinesin to exhibit processive plus-end-directed motility on single microtubules as individual homodimers. Our results show that PAKRP2 processivity is achieved despite having an exceptionally long (32 residues) neck linker. Furthermore, using high-resolution nanoparticle tracking, we find that PAKRP2 steps via a hand-over-hand mechanism that includes frequent side steps, a prolonged diffusional search of the tethered head, and tight coupling of the ATP hydrolysis cycle to the forward-stepping cycle. Interestingly, truncating the PAKRP2 neck linker to 14 residues decreases the run length of PAKRP2; thus, the long neck linker enhances the processive behavior. Based on the canonical model of kinesin stepping, such a long neck linker is expected to decrease the processivity and disrupt the coupling of ATP hydrolysis to forward stepping. Therefore, we conclude that PAKRP2 employs a noncanonical strategy for processive motility, wherein a long neck linker is coupled with a slow ATP hydrolysis rate to allow for an extended diffusional search during each step without sacrificing processivity or efficiency.  相似文献   

18.
Myosin VI is an ATP driven molecular motor that normally takes forward and processive steps on actin filaments, but also on occasion stochastic backward steps. While a number of models have attempted to explain the backwards steps, none offer an acceptable mechanism for their existence. We therefore performed single molecule imaging of myosin VI and calculated the stepping rates of forward and backward steps at the single molecule level. The forward stepping rate was proportional to the ATP concentration, whereas the backward stepping rate was independent. Using these data, we proposed that spontaneous detachment of the leading head is uncoupled from ATP binding and is responsible for the backward steps of myosin VI.  相似文献   

19.
Electromyographic studies of mammalian locomotion have concentrated on cursorial species. Since these may not be typical of mammals in general, the present study has been made on the relatively non-cursorial rat.
Electromyography has been performed on 20 muscles or muscle groups of the hind-limb in decerebrate rats, moving at from one to eight steps per second. All muscles were active in discrete bursts, with fixed phase relations in the step cycle. They can be categorized as flexors–active just before and during swing, extensors/adductors–active just before and during stance, muscles controlling the foot, and some double joint muscles. The latter, represented by semitendinosus and rectus femoris, tend to be active twice in each step cycle. There is a distinct reciprocity in the activities of these two muscles. The duration of the extensor/adductor activity decreases with increase of stepping speed.
The pattern of muscle activity during the step cycle is very similar in both cursorial species and the rat. This suggests that central nervous mechanisms controlling the timing of single limb motor output in mammals may be very conservative.  相似文献   

20.
《Biophysical journal》2022,121(24):4860-4866
Nanoscale stepper motors such as kinesin and dynein play a key role in numerous natural processes such as mitotic spindle formation during cell division or intracellular organelle transport. Their high efficacy in terms of operational speed and processivity has inspired the investigation of biomimetic technologies based on the use of programmable molecules. In particular, several designs of molecular walkers have been explored using DNA nanotechnology. Here, we study the actuation of a DNA-origami walker on a DNA-origami track based on three principles: 1) octapedal instead of bipedal walking for greater redundancy; 2) three pairs of orthogonal sequences, each of which fuels one repeatable stepping phase for cyclically driven motion with controlled directionality based on strain-based step selection; 3) designed size of only 3.5 nm per step on an origami track. All three principles are innovative in the sense that earlier demonstrations of steppers relied on a maximum of four legs on at least four orthogonal sequences to drive cyclic stepping, and took steps much larger than 3.4 nm in size. Using gel electrophoresis and negative-stain electron microscopy, we demonstrate cyclic actuation of DNA-origami structures through states defined by three sets of specific sequences of anchor points. However, this mechanism was not able to provide the intended control over directionality of movement. DNA-origami-based stepper motors will offer a future platform for investigating how increasing numbers of legs can be exploited to achieve robust stepping with relatively small step sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号