首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow-derived mesenchymal stem cells (BM-MSCs), the common progenitor cells of adipocytes and osteoblasts, have been recognized as the key mediator during bone formation. Herein, our study aim to investigate molecular mechanisms underlying circular RNA (circRNA) AFF4 (circ_AFF4)-regulated BM-MSCs osteogenesis. BM-MSCs were characterized by FACS, ARS, and ALP staining. Expression patterns of circ_AFF4, miR-135a-5p, FNDC5/Irisin, SMAD1/5, and osteogenesis markers, including ALP, BMP4, RUNX2, Spp1, and Colla1 were detected by qRT-PCR, western blot, or immunofluorescence staining, respectively. Interactions between circ_AFF4 and miR-135a-5p, FNDC5, and miR-135a-5p were analyzed using web tools including TargetScan, miRanda, and miRDB, and further confirmed by luciferase reporter assay and RNA pull-down. Complex formation between Irisin and Integrin αV was verified by Co-immunoprecipitation. To further verify the functional role of circ_AFF4 in vivo during bone formation, we conducted animal experiments harboring circ_AFF4 knockdown, and born samples were evaluated by immunohistochemistry, hematoxylin and eosin, and Masson staining. Circ_AFF4 was upregulated upon osteogenic differentiation induction in BM-MSCs, and miR-135a-5p expression declined as differentiation proceeds. Circ_AFF4 knockdown significantly inhibited osteogenesis potential in BM-MSCs. Circ_AFF4 stimulated FNDC5/Irisin expression through complementary binding to its downstream target molecule miR-135a-5p. Irisin formed an intermolecular complex with Integrin αV and activated the SMAD1/5 pathway during osteogenic differentiation. Our work revealed that circ_AFF4, acting as a sponge of miR-135a-5p, triggers the promotion of FNDC5/Irisin via activating the SMAD1/5 pathway to induce osteogenic differentiation in BM-MSCs. These findings gained a deeper insight into the circRNA-miRNA regulatory system in the bone marrow microenvironment and may improve our understanding of bone formation-related diseases at physiological and pathological levels.Subject terms: Stem cells, Diseases  相似文献   

2.

Background

Mesenchymal stem (MS) cells are excellent candidates for cell-based therapeutic strategies to regenerate injured tissue. Although human MS cells can be isolated from bone marrow and directed to differentiate by means of an osteogenic pathway, the regulation of cell-fate determination is not well understood. Recent reports identify critical roles for microRNAs (miRNAs), regulators of gene expression either by inhibiting the translation or by stimulating the degradation of target mRNAs.

Methodology/Principal Findings

In this study, we employed a library of miRNA inhibitors to evaluate the role of miRNAs in early osteogenic differentiation of human MS cells. We discovered that miR-148b, -27a and -489 are essential for the regulation of osteogenesis: miR-27a and miR-489 down-regulate while miR-148b up-regulates differentiation. Modulation of these miRNAs induced osteogenesis in the absence of other external differentiation cues and restored osteogenic potential in high passage number human MS cells.

Conclusions/Significance

Overall, we have demonstrated the utility of the functional profiling strategy for unraveling complex miRNA pathways. Our findings indicate that miRNAs regulate early osteogenic differentiation in human MS cells: miR-148b, -27a, and -489 were found to play a critical role in osteogenesis.  相似文献   

3.
Zeng Y  Qu X  Li H  Huang S  Wang S  Xu Q  Lin R  Han Q  Li J  Zhao RC 《FEBS letters》2012,586(16):2375-2381
Elucidation of the molecular mechanisms governing human adipose-derived mesenchymal stem cells (hASCs) osteogenic differentiation is of great importance for improving the treatment of bone-related diseases. In this study, we examined the role of microRNA (miR)-100 on the osteogenesis of hASCs. Overexpression of miR-100 inhibited osteogenic differentiation of hASCs in vitro, whereas downregulation of miR-100 enhanced the process. Target prediction analysis and dual luciferase report assay confirmed that bone morphogenetic protein receptor type II (BMPR2) was a direct target of miR-100. Furthermore, knockdown of BMPR2 by RNA interference inhibited osteogenic differentiation of hASCs, similar as the effect of upregulation miR-100. Taken together, our findings imply that miR-100 plays a negative role in osteogenic differentiation and might act through targeting BMPR2.  相似文献   

4.
miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3' untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation.  相似文献   

5.
MicroRNAs are a group of endogenous regulators that participate in several cellular physiological processes. However, the role of miR-137 in the osteogenic differentiation of human adipose-derived stem cells (hASCs) has not been reported. This study verified a general downward trend in miR-137 expression during the osteogenic differentiation of hASCs. MiR-137 knockdown promoted the osteogenesis of hASCs in vitro and in vivo. Mechanistically, inhibition of miR-137 activated the bone morphogenetic protein 2 (BMP2)-mothers against the decapentaplegic homolog 4 (SMAD4) pathway, whereas repressed lysine-specific histone demethylase 1 (LSD1), which was confirmed as a negative regulator of osteogenesis in our previous studies. Furthermore, LSD1 knockdown enhanced the expression of BMP2 and SMAD4, suggesting the coordination of LSD1 in the osteogenic regulation of miR-137. This study indicated that miR-137 negatively regulated the osteogenic differentiation of hASCs via the LSD1/BMP2/SMAD4 signaling network, revealing a new potential therapeutic target of hASC-based bone tissue engineering.  相似文献   

6.
7.
Mesenchymal stem cells (MSCs) can differentiate into several distinct cell types, including osteoblasts and adipocytes. The balance between osteogenic and adipogenic differentiation is disrupted in several osteogenic-related disorders, such as osteoporosis. So far, little is known about the molecular mechanisms that drive final lineage commitment of MSCs. In this study, we revealed that miR-17-5p and miR-106a have dual functions in the modulation of human adipose-derived mesenchymal stem cells (hADSCs) commitment by gain- and loss-of-function assays. They could promote adipogenesis and inhibit osteogenesis. Luciferase reporter assay, western blot and ELISA suggested BMP2 was a direct target of miR-17-5p and miR-106a. Downregulation of endogeneous BMP2 by RNA interference suppressed osteogenesis and increased adipogenesis, similar to the effect of miR-17-5p and miR-106a upregulation. Moreover, the inhibitory effects of miR-17-5p on osteogenic and adipogenic differentiation of hADSCs could be reversed by BMP2 RNA interference. In conclusion, miR-17-5p and miR-106a regulate osteogenic and adipogenic lineage commitment of hADSCs by directly targeting BMP2, and subsequently decreased osteogenic TAZ, MSX2 and Runx2, and increased adipogenic C/EBPα and PPARγ.  相似文献   

8.
9.
10.
Rapid and extensive bone loss, one of the skeletal complications after spinal cord injury (SCI) occurrence, drastically sacrifices the life quality of SCI patients. It has been demonstrated that microRNA (miRNA) dysfunction plays an important role in the initiation and development of bone loss post-SCI. Nevertheless, the effect of miR-19b-3p on bone loss after SCI is unknown and the accurate mechanism is left to be elucidated. The present work was conducted to explore the role of miR-19b-3p/phosphatase and tensin homolog deleted on chromosome ten (PTEN) axis on osteogenesis after SCI and further investigates the underlying mechanisms. We found that miR-19b-3p level was increased in the femurs of SCI rats with decreased autophagy. The overexpression of miR-19b-3p in bone marrow mesenchymal stem cells (BMSCs) targeted down-regulation of PTEN expression, facilitated protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation, and thereby suppressing BMSCs osteogenic differentiation via autophagy. Besides, the inhibiting effects of miR-19b-3p on osteogenic differentiation of BMSCs could be diminished by autophagy inducer rapamycin. Meanwhile, bone loss after SCI in rats was also reversed by antagomir-19b-3p treatment, suggesting miR-19b-3p was an essential target for osteogenic differentiation via regulating autophagy. These results indicated that miR-19b-3p was involved in bone loss after SCI by inhibiting osteogenesis via PTEN/Akt/mTOR signalling pathway.  相似文献   

11.
Forkhead box O1 (FOXO1) is a key regulator of osteogenesis. The aim of this study was to identify the mechanisms of microRNAs (miRNAs) targeting FOXO1 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). Three miRNA target prediction programs were used to search for potential miRNAs that target FOXO1. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-1271-5p and FOXO1 during osteogenic differentiation. Target gene prediction and screening, luciferase reporter assay was used to verify the downstream target gene of miR-1271-5p. The expression levels of FOXO1 and Runx2 were detected by RT-qPCR and Western blot analysis. Alkaline phosphatase (ALP) activity and matrix mineralization were detected by biochemical methods. The expression levels of Runx2, ALP, and osteocalcin were detected by RT-qPCR. Our results showed that miR-1271-5p was downregulated during osteogenic induction. And the expression levels of miR-1271-5p were higher in osteoporotic tissues than that in adjacent nonosteoporotic tissues. The expression levels of FOXO1 were lower in osteoporotic tissues than that in adjacent nonosteoporotic tissues. And a negative correlation was found between miR-1271-5p and FOXO1 in osteoporotic tissues. Overexpression of miR-1271-5p downregulated FOXO1 and inhibited osteogenic differentiation in hMSCs. Overexpression of miR-1271-5p downregulated the expression of osteogenic markers and reduced ALP activity. In addition, ectopic expression of FOXO1 reversed the effect of miR-1271-5p on osteogenic differentiation. In conclusion, miR-1271-5p functioned as a therapeutic target of osteogenic differentiation in hMSCs by inhibiting FOXO1, which provides valuable insights into the use of miR-1271-5p as a target in the treatment of osteoporosis and other bone metabolic diseases.  相似文献   

12.
Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells.  相似文献   

13.
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs) in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001) in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness.  相似文献   

14.
Human adipose-derived stem cells (hADSC) are capable of differentiating into an osteogenic lineage. It is believed that microRNAs (miRNAs) play important roles in regulating this osteogenic differentiation of human adipose-derived cells, although its molecular mechanism remains unclear. We investigated the miRNA expression profile during osteogenic differentiation of hADSCs, and assessed the roles of involved miRNAs during the osteogenic differentiation. We obtained and cultured human adipose-derived stems cells from donors who underwent elective liposuction or other abdominal surgery at our institution. miRNA expression profiles pre- and post-osteogenic induction were obtained using microarray essay, and differently expressed miRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The expression of osteogenic proteins was detected using an enzyme-linked immunosorbent assay. Putative targets of the miRNAs were predicted using online software MiRanda, TargetScan, and miRBase. Eight miRNAs were found differently expressed pre- and post-osteogenic induction, among which four miRNAs (miR-17, miR-20a, miR-20b, and miR-106a) were up-regulated and four miRNAs (miR-31, miR-125a-5p, miR-125b, and miR-193a) were down-regulated. qRT-PCR analysis further confirmed the results. Predicted target genes of the differentially expressed miRNAs based on the overlap from three public prediction algorithms: MiRanda, TargetScan, and miRBase Target have the known functions of regulating stem cell osteogenic differentiation, self-renewal, signal transduction, and cell cycle control. We identified a group of miRNAs that may play important roles in regulating hADSC cell differentiation toward an osteoblast lineage. Further study of these miRNAs may elucidate the mechanism of hADSC differentiation into adipose tissue, and thus provide basis for tissue engineering.  相似文献   

15.
16.
17.
18.
19.
Adipose-derived mesenchymal stem cells (ADSCs) are promising candidate for regenerative medicine to repair non-healing bone defects due to their high and easy availability. However, the limited osteogenic differentiation potential greatly hinders the clinical application of ADSCs in bone repair. Accumulating evidences demonstrate that circular RNAs (circRNAs) are involved in stem/progenitor cell fate determination, but their specific role in stem/progenitor cell osteogenesis, remains mostly undescribed. Here, we show that circRNA-vgll3 originating from the vgll3 locus markedly enhances osteogenic differentiation of ADSCs; nevertheless, silencing of circRNA-vgll3 dramatically attenuates ADSC osteogenesis. Furthermore, we validate that circRNA-vgll3 functions in ADSC osteogenesis through a circRNA-vgll3/miR-326-5p/integrin α5 (Itga5) pathway. Itga5 promotes ADSC osteogenic differentiation and miR-326-5p suppresses Itga5 translation. CircRNA-vgll3 directly sequesters miR-326-5p in the cytoplasm and inhibits its activity to promote osteogenic differentiation. Moreover, the therapeutic potential of circRNA-vgll3-modified ADSCs with calcium phosphate cement (CPC) scaffolds was systematically evaluated in a critical-sized defect model in rats. Our results demonstrate that circRNA-vgll3 markedly enhances new bone formation with upregulated bone mineral density, bone volume/tissue volume, trabeculae number, and increased new bone generation. This study reveals the important role of circRNA-vgll3 during new bone biogenesis. Thus, circRNA-vgll3 engineered ADSCs may be effective potential therapeutic targets for bone regenerative medicine.Subject terms: Epigenetics, Stem-cell research  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号