首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA encoding the Arabidopsis thaliana uridine 5′-monophosphate (UMP)/cytidine 5′-monophosphate (CMP) kinase was isolated by complementation of a Saccharomyces cerevisiae ura6 mutant. The deduced amino acid sequence of the plant UMP/CMP kinase has 50% identity with other eukaryotic UMP/CMP kinase proteins. The cDNA was subcloned into pGEX-4T-3 and expressed as a glutathione S-transferase fusion protein in Escherichia coli. Following proteolytic digestion, the plant UMP/CMP kinase was purified and analyzed for its structural and kinetic properties. The mass, N-terminal sequence, and total amino acid composition agreed with the sequence and composition predicted from the cDNA sequence. Kinetic analysis revealed that the UMP/CMP kinase preferentially uses ATP (Michaelis constant [Km] = 29 μm when UMP is the other substrate and Km = 292 μm when CMP is the other substrate) as a phosphate donor. However, both UMP (Km = 153 μm) and CMP (Km = 266 μm) were equally acceptable as the phosphate acceptor. The optimal pH for the enzyme is 6.5. P1, P5-di(adenosine-5′) pentaphosphate was found to be a competitive inhibitor of both ATP and UMP.  相似文献   

2.
β2-Microglobulin (β2-m), a protein responsible for dialysis-related amyloidosis, adopts a typical immunoglobulin domain fold with the N-terminal peptide bond of Pro32 in a cis isomer. The refolding of β2-m is limited by the slow trans-to-cis isomerization of Pro32, implying that intermediates with a non-native trans-Pro32 isomer are precursors for the formation of amyloid fibrils. To obtain further insight into the Pro-limited folding of β2-m, we studied the Gdn-HCl-dependent unfolding/refolding kinetics using two mutants (W39 and P32V β2-ms) as well as the wild-type β2-m. W39 β2-m is a triple mutant in which both of the authentic Trp residues (Trp60 and Trp95) are replaced by Phe and a buried Trp common to other immunoglobulin domains is introduced at the position of Leu39 (i.e., L39W/W60F/W95F). W39 β2-m exhibits a dramatic quenching of fluorescence upon folding, enabling a detailed analysis of Pro-limited unfolding/refolding. On the other hand, P32V β2-m is a mutant in which Pro32 is replaced by Val, useful for probing the kinetic role of the trans-to-cis isomerization of Pro32. A comparative analysis of the unfolding/refolding kinetics of these mutants including three types of double-jump experiments revealed the prolyl isomerization to be coupled with the conformational transitions, leading to apparently unusual kinetics, particularly for the unfolding. We suggest that careful consideration of the kinetic coupling of unfolding/refolding and prolyl isomerization, which has tended to be neglected in recent studies, is essential for clarifying the mechanism of protein folding and, moreover, its biological significance.  相似文献   

3.
Metabolic stress, as well as several antidiabetic agents, increases hepatic nucleotide monophosphate (NMP) levels, activates AMP-activated protein kinase (AMPK), and suppresses glucose production. We tested the necessity of hepatic AMPK for the in vivo effects of an acute elevation in NMP on metabolism. 5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR; 8 mg·kg−1·min−1)-euglycemic clamps were performed to elicit an increase in NMP in wild type (α1α2lox/lox) and liver-specific AMPK knock-out mice (α1α2lox/lox + Albcre) in the presence of fixed glucose. Glucose kinetics were equivalent in 5-h fasted α1α2lox/lox and α1α2lox/lox + Albcre mice. AMPK was not required for AICAR-mediated suppression of glucose production and increased glucose disappearance. These results demonstrate that AMPK is unnecessary for normal 5-h fasting glucose kinetics and AICAR-mediated inhibition of glucose production. Moreover, plasma fatty acids and triglycerides also decreased independently of hepatic AMPK during AICAR administration. Although the glucoregulatory effects of AICAR were shown to be independent of AMPK, these studies provide in vivo support for the AMPK energy sensor paradigm. AICAR reduced hepatic energy charge by ∼20% in α1α2lox/lox, which was exacerbated by ∼2-fold in α1α2lox/lox + Albcre. This corresponded to a ∼6-fold rise in AMP/ATP in α1α2lox/lox + Albcre. Consistent with the effects on adenine nucleotides, maximal mitochondrial respiration was ∼30% lower in α1α2lox/lox + Albcre than α1α2lox/lox livers. Mitochondrial oxidative phosphorylation efficiency was reduced by 25%. In summary, these results demonstrate that the NMP capacity to inhibit glucose production in vivo is independent of liver AMPK. In contrast, AMPK promotes mitochondrial function and protects against a more precipitous fall in ATP during AICAR administration.  相似文献   

4.
Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38β, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38β. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38β in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38β and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.  相似文献   

5.
We investigate the hydration state of horse-heart cytochrome c (hh cyt c) in the unfolding process induced by trifluoroacetic acid (TFA). The conformation of hh cyt c changes from the native (N) state (2.9 < pH < 6.0) to the acid-unfolded (UA) state (1.7 < pH < 2.0) to the acid-induced molten globule (A) state (pH ∼1.2). Hydration properties of hh cyt c during this process are measured at 20°C by high-resolution dielectric relaxation (DR) spectroscopy, UV-vis absorbance, and circular dichroism spectroscopy. Constrained water of hh cyt c is observed at every pH as an ∼5-GHz Debye component (DC) (DR time, τD ∼30 ps) and its DR amplitude (DRA) is increased by 77% upon N-to-UA transition, when pH changes from 6.0 to 2.0. Even in the N state, the DRA of the constrained-water component is found to be increased by 22% with decreasing pH from 6.0 to 2.9, suggesting an increase in the accessible surface area of native hh cyt c. Moreover, hypermobile water around native hh cyt c is detected at pH 6.0 as a 19-GHz DC (τD ∼ 8.4 ps < τDW = 9.4 ps), but is not found at other pH values. The DRA signal of constrained water is found to return to the pH 2.9 (N-state) level upon UA-to-A transition. Fast-response water (slightly slower than bulk) around A-state hh cyt c is detected at pH 1.2, and this suggests some accumulation of TFA ions around the peptide chain. Thus, this high-resolution DR spectroscopy study reveals that hh cyt c exhibits significant hydration-state change in the TFA-unfolding process.  相似文献   

6.
Trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) reduces triglyceride (TG) levels in adipocytes through multiple pathways, with AMP-activated protein kinase (AMPK) generally facilitating, and peroxisome proliferator-activated receptor γ (PPARγ) generally opposing these reductions. Sirtuin 1 (SIRT1), a histone/protein deacetylase that affects energy homeostasis, often functions coordinately with AMPK, and is capable of binding to PPARγ, thereby inhibiting its activity. This study investigated the role of SIRT1 in the response of 3T3-L1 adipocytes to t10c12 CLA by testing the following hypotheses: 1) SIRT1 is functionally required for robust TG reduction; and 2) SIRT1, AMPK, and PPARγ cross regulate each other. These experiments were performed by using activators, inhibitors, or siRNA knockdowns that affected these pathways in t10c12 CLA-treated 3T3-L1 adipocytes. Inhibition of SIRT1 amounts or activity using siRNA, sirtinol, nicotinamide, or etomoxir attenuated the amount of TG loss, while SIRT1 activator SRT1720 increased the TG loss. SRT1720 increased AMPK activity while sirtuin-specific inhibitors decreased AMPK activity. Reciprocally, an AMPK inhibitor reduced SIRT1 activity. Treatment with t10c12 CLA increased PPARγ phosphorylation in an AMPK-dependent manner and increased the amount of PPARγ bound to SIRT1. Reciprocally, a PPARγ agonist attenuated AMPK and SIRT1 activity levels. These results indicated SIRT1 increased TG loss and that cross regulation between SIRT1, AMPK, and PPARγ occurred in 3T3-L1 adipocytes treated with t10c12 CLA.  相似文献   

7.
Constitutively active tyrosine kinases promote leukemogenesis by increasing cell proliferation and inhibiting apoptosis. However, mechanisms underlying apoptotic inhibition have not been fully elucidated. In many settings, apoptosis occurs by mitochondrial cytochrome c release, which nucleates the Apaf-1/caspase-9 apoptosome. Here we report that the leukemogenic kinases, Bcr-Abl, FLT3/D835Y, and Tel-PDGFRβ, all can inhibit apoptosome function. In cells expressing these kinases, the previously reported apoptosome inhibitor, Hsp90β, bound strongly to Apaf-1, preventing cytochrome c-induced Apaf-1 oligomerization and caspase-9 recruitment. Hsp90β interacted weakly with the apoptosome in untransformed cells. While Hsp90β was phosphorylated at Ser 226/Ser 255 in untransformed cells, phosphorylation was absent in leukemic cells. Expression of mutant Hsp90β (S226A/S255A), which mimics the hypophosphorylated form in leukemic cells, conferred resistance to cytochrome c-induced apoptosome activation in normal cells, reflecting enhanced binding of nonphosphorylatable Hsp90β to Apaf-1. In Bcr-Abl-positive mouse bone marrow cells, nonphosphorylatable Hsp90β expression conferred imatinib (Gleevec) resistance. These data provide an explanation for apoptosome inhibition by activated leukemogenic tyrosine kinases and suggest that alterations in Hsp90β-apoptosome interactions may contribute to chemoresistance in leukemias.  相似文献   

8.
The unicellular protozoan Trypanosoma cruzi is the causing agent of Chagas disease which affects several millions of people around the world. The components of the cell signaling pathways in this parasite have not been well studied yet, although its genome can encode several components able to transduce the signals, such as protein kinases and phosphatases. In a previous work we have found that DNA polymerase β (Tcpolβ) can be phosphorylated in vivo and this modification activates the synthesis activity of the enzyme. Tcpolβ is kinetoplast-located and is a key enzyme in the DNA base excision repair (BER) system. The polypeptide possesses several consensus phosphorylation sites for several protein kinases, however, a direct phosphorylation of those sites by specific kinases has not been reported yet. Tcpolβ has consensus phosphorylation sites for casein kinase 1 (CK1), casein kinase 2 (CK2) and aurora kinase (AUK). Genes encoding orthologues of those kinases exist in T. cruzi and we were able to identify the genes and to express them to investigate whether or no Tcpolβ could be a substrate for in vitro phosphorylation by those kinases. Both CK1 and TcAUK1 have auto-phosphorylation activities and they are able to phosphorylate Tcpolβ. CK2 cannot perform auto-phosphorylation of its subunits, however, it was able to phosphorylate Tcpolβ. Pharmacological inhibitors used to inhibit the homologous mammalian kinases can also inhibit the activity of T. cruzi kinases, although, at higher concentrations. The phosphorylation events carried out by those kinases can potentiate the DNA polymerase activity of Tcpolβ and it is discussed the role of the phosphorylation on the DNA polymerase and lyase activities of Tcpolβ. Taken altogether, indicates that CK1, CK2 and TcAUK1 can play an in vivo role regulating the function of Tcpolβ.  相似文献   

9.
The p90 ribosomal protein kinase 2 (RSK2) is a highly expressed Ser/Thr kinase activated by growth factors and is involved in cancer cell proliferation and tumor promoter-induced cell transformation. RSK2 possesses two non-identical kinase domains, and the structure of its N-terminal domain (NTD), which is responsible for phosphorylation of a variety of substrates, is unknown. The crystal structure of the NTD RSK2 was determined at 1.8 Å resolution in complex with AMP-PNP. The N-terminal kinase domain adopted a unique active conformation showing a significant structural diversity of the kinase domain compared to other kinases. The NTD RSK2 possesses a three-stranded βB-sheet inserted in the N-terminal lobe, resulting in displacement of the αC-helix and disruption of the Lys-Glu interaction, classifying the kinase conformation as inactive. The purified protein was phosphorylated at Ser227 in the T-activation loop and exhibited in vitro kinase activity. A key characteristic is the appearance of a new contact between Lys216 (βB-sheet) and the β-phosphate of AMP-PNP. Mutation of this lysine to alanine impaired both NTDs in vitro and full length RSK2 ex vivo activity, emphasizing the importance of this interaction. Even though the N-terminal lobe undergoes structural re-arrangement, it possesses an intact hydrophobic groove formed between the αC-helix, the β4-strand, and the βB-sheet junction, which is occupied by the N-terminal tail. The presence of a unique βB-sheet insert in the N-lobe suggests a different type of activation mechanism for RSK2.  相似文献   

10.
In addition to lipid kinase activity, the class-I PI 3-kinases also function as protein kinases targeting regulatory autophosphorylation sites and exogenous substrates. The latter include a recently identified regulatory phosphorylation of the GM-CSF/IL-3 βc receptor contributing to survival of acute myeloid leukaemia cells. Previous studies suggested differences in the protein kinase activity of the 4 isoforms of class-I PI 3-kinase so we compared the ability of all class-I PI 3-kinases and 2 common oncogenic mutants to autophosphorylate, and to phosphorylate an intracellular fragment of the GM-CSF/IL-3 βc receptor (βic). We find p110α, p110β and p110γ all phosphorylate βic but p110δ is much less effective. The two most common oncogenic mutants of p110α, H1047R and E545K have stronger protein kinase activity than wildtype p110α, both in terms of autophosphorylation and towards βic. Importantly, the lipid kinase activity of the oncogenic mutants is still inhibited by autophosphorylation to a similar extent as wildtype p110α. Previous evidence indicates the protein kinase activity of p110α is Mn2+ dependent, casting doubt over its role in vivo. However, we show that the oncogenic mutants of p110α plus p110β and p110γ all display significant activity in the presence of Mg2+. Furthermore we demonstrate that some small molecule inhibitors of p110α lipid kinase activity (PIK-75 and A66) are equally effective against the protein kinase activity, but other inhibitors (e.g. wortmannin and TGX221) show different patterns of inhibition against the lipid and protein kinases activities. These findings have implications for the function of PI 3-kinase, especially in tumours carrying p110α mutations.  相似文献   

11.
12.
Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met80) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c+/+ cells than in cytochrome c−/− cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity.  相似文献   

13.
We used a gene knockout approach to elucidate the specific roles played by the Jun-N-terminal kinase (JNK) and NF-κB pathways downstream of TNF-α in the context of α(2) type I collagen gene (COL1A2) expression. In JNK1−/−-JNK2−/− (JNK−/−) fibroblasts, TNF-α inhibited basal COL1A2 expression but had no effect on TGF-β-driven gene transactivation unless jnk1 was introduced ectopically. Conversely, in NF-κB essential modulator−/− (NEMO−/−) fibroblasts, lack of NF-κB activation did not influence the antagonism exerted by TNF-α against TGF-β but prevented repression of basal COL1A2 gene expression. Similar regulatory mechanisms take place in dermal fibroblasts, as evidenced using transfected dominant-negative forms of MKK4 and IKK-α, critical kinases upstream of the JNK and NF-κB pathways, respectively. These results represent the first demonstration of an alternate usage of distinct signaling pathways by TNF-α to inhibit the expression of a given gene, COL1A2, depending on its activation state.  相似文献   

14.
Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase.

dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK.

dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed.

List of abbreviations: ddC, 2′, 3′-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2′,3′-dideoxy-3′-thiacytidine, Lamivudine; CdA, 2-cloro-2′-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1–3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1–4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.  相似文献   

15.
The Rho GTPases play distinctive roles in cytoskeletal reorganization associated with growth and differentiation. The Cdc42/Rac-binding p21-activated kinase (PAK) and Rho-binding kinase (ROK) act as morphological effectors for these GTPases. We have isolated two related novel brain kinases whose p21-binding domains resemble that of PAK whereas the kinase domains resemble that of myotonic dystrophy kinase-related ROK. These ~190-kDa myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs) preferentially phosphorylate nonmuscle myosin light chain at serine 19, which is known to be crucial for activating actin-myosin contractility. The p21-binding domain binds GTP-Cdc42 but not GDP-Cdc42. The multidomain structure includes a cysteine-rich motif resembling those of protein kinase C and n-chimaerin and a putative pleckstrin homology domain. MRCKα and Cdc42V12 colocalize, particularly at the cell periphery in transfected HeLa cells. Microinjection of plasmid encoding MRCKα resulted in actin and myosin reorganization. Expression of kinase-dead MRCKα blocked Cdc42V12-dependent formation of focal complexes and peripheral microspikes. This was not due to possible sequestration of the p21, as a kinase-dead MRCKα mutant defective in Cdc42 binding was an equally effective blocker. Coinjection of MRCKα plasmid with Cdc42 plasmid, at concentrations where Cdc42 plasmid by itself elicited no effect, led to the formation of the peripheral structures associated with a Cdc42-induced morphological phenotype. These Cdc42-type effects were not promoted upon coinjection with plasmids of kinase-dead or Cdc42-binding-deficient MRCKα mutants. These results suggest that MRCKα may act as a downstream effector of Cdc42 in cytoskeletal reorganization.  相似文献   

16.
Studies of human NK cells and their role in tumor suppression have largely been restricted to in vitro experiments which lack the complexity of whole organisms, or mouse models which differ significantly from humans. In this study we showed that, in contrast to C57BL/6 Rag2−/−c −/− and NOD/Scid mice, newborn BALB/c Rag2−/−c −/− mice can support the development of human NK cells and CD56+ T cells after intrahepatic injection with hematopoietic stem cells. The human CD56+ cells in BALB/c Rag2−/−c −/− mice were able to produce IFN-γ in response to human IL-15 and polyI:C. NK cells from reconstituted Rag2−/−c −/− mice were also able to kill and inhibit the growth of K562 cells in vitro and were able to produce IFN-γ in response to stimulation with K562 cells. In vivo, reconstituted Rag2−/−c −/− mice had higher survival rates after K562 challenge compared to non-reconstituted Rag2−/−c −/− mice and were able to control tumor burden in various organs. Reconstituted Rag2−/−c −/− mice represent a model in which functional human NK and CD56+ T cells can develop from stem cells and can thus be used to study human disease in a more clinically relevant environment.  相似文献   

17.
18.
19.
Domain fusion between SNF1-related kinase subunits during plant evolution   总被引:9,自引:0,他引:9  
Members of the conserved SNF1/AMP-activated protein kinase (AMPK) family regulate cellular responses to environmental and nutritional stress in eukaryotes. Yeast SNF1 and animal AMPKs form a complex with regulatory SNF4/AMPKγ and SIP1/SIP2/GAL83/AMPKβ subunits. The β-subunits function as target selective adaptors that anchor the catalytic kinase and regulator SNF4/γ-subunits to their kinase association (KIS) and association with the SNF1 complex (ASC) domains. Here we demonstrate that plant SNF1-related protein kinases (SnRKs) interact with an adaptor-regulator protein, AKINβγ, in which an N-terminal KIS domain characteristic of β-subunits is fused with a C-terminal region related to the SNF4/AMPKγ proteins. AKINβγ is constitutively expressed in plants, suppresses the yeast Δsnf4 mutation, and shows glucose-regulated interaction with the Arabidopsis SnRK, AKIN11. Our results suggest that evolution of AKINβγ reflects a unique function of SNF1-related protein kinases in plant glucose and stress signalling.  相似文献   

20.
Type I cGMP-dependent protein kinases (PKGIs) are important components of various signaling pathways and are canonically activated by nitric oxide– and natriuretic peptide–induced cGMP generation. However, some reports have shown that PKGIα can also be activated in vitro by oxidizing agents. Using in vitro kinase assays, here, we found that purified PKGIα stored in PBS with Flag peptide became oxidized and activated even in the absence of oxidizing agent; furthermore, once established, this activation could not be reversed by reduction with DTT. We demonstrate that activation was enhanced by addition of Cu2+ before storage, indicating it was driven by oxidation and mediated by trace metals present during storage. Previous reports suggested that PKGIα Cys43, Cys118, and Cys196 play key roles in oxidation-induced kinase activation; we show that activation was reduced by C118A or C196V mutations, although C43S PKGIα activation was not reduced. In contrast, under the same conditions, purified PKGIβ activity only slightly increased with storage. Using PKGIα/PKGIβ chimeras, we found that residues throughout the PKGIα-specific autoinhibitory loop were responsible for this activation. To explore whether oxidants activate PKGIα in H9c2 and C2C12 cells, we monitored vasodilator-stimulated phosphoprotein phosphorylation downstream of PKGIα. While we observed PKGIα Cys43 crosslinking in response to H2O2 (indicating an oxidizing environment in the cells), we were unable to detect increased vasodilator-stimulated phosphoprotein phosphorylation under these conditions. Taken together, we conclude that while PKGIα can be readily activated by oxidation in vitro, there is currently no direct evidence of oxidation-induced PKGIα activation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号