首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fetal growth restriction (FGR) and coagulopathies are often associated with aberrant maternal inflammation. Moderate-intensity exercise during pregnancy has been shown to increase utero-placental blood flow and to enhance fetal nutrition as well as fetal and placental growth. Furthermore, exercise is known to reduce inflammation. To evaluate the effect of moderate-intensity exercise on inflammation associated with the development of maternal coagulopathies and FGR, Wistar rats were subjected to an exercise regime before and during pregnancy. To model inflammation-induced FGR, pregnant rats were administered daily intraperitoneal injections of E. coli lipopolysaccharide (LPS) on gestational days (GD) 13.5–16.5 and sacrificed at GD 17.5. Control rats were injected with saline. Maternal hemostasis was assessed by thromboelastography. Moderate-intensity exercise prevented LPS-mediated increases in white blood cell counts measured on GD 17.5 and improved maternal hemostasis profiles. Importantly, our data reveal that exercise prevented LPS-induced FGR. Moderate-intensity exercise initiated before and maintained during pregnancy may decrease the severity of maternal and perinatal complications associated with abnormal maternal inflammation.  相似文献   

2.
Fetal growth restriction (FGR) is the inability of a fetus to reach its genetically predetermined growth potential. In the absence of a genetic anomaly or maternal undernutrition, FGR is attributable to "placental insufficiency": inappropriate maternal/fetal blood flow, reduced nutrient transport or morphological abnormalities of the placenta (e.g., altered barrier thickness). It is not known whether these diverse factors act singly, or in combination, having additive effects that may lead to greater FGR severity. We suggest that multiplicity of such dysfunction might underlie the diverse FGR phenotypes seen in humans. Pregnant endothelial nitric oxide synthase knockout (eNOS(-/-)) dams exhibit dysregulated vascular adaptations to pregnancy, and eNOS(-/-) fetuses of such dams display FGR. We investigated the hypothesis that both altered vascular function and placental nutrient transport contribute to the FGR phenotype. eNOS(-/-) dams were hypertensive prior to and during pregnancy and at embryonic day (E) 18.5 were proteinuric. Isolated uterine artery constriction was significantly increased, and endothelium-dependent relaxation significantly reduced, compared with wild-type (WT) mice. eNOS(-/-) fetal weight and abdominal circumference were significantly reduced compared with WT. Unidirectional maternofetal (14)C-methylaminoisobutyric acid (MeAIB) clearance and sodium-dependent (14)C-MeAIB uptake into mouse placental vesicles were both significantly lower in eNOS(-/-) fetuses, indicating diminished placental nutrient transport. eNOS(-/-) mouse placentas demonstrated increased hypoxia at E17.5, with elevated superoxide compared with WT. We propose that aberrant uterine artery reactivity in eNOS(-/-) mice promotes placental hypoxia with free radical formation, reducing placental nutrient transport capacity and fetal growth. We further postulate that this mouse model demonstrates "uteroplacental hypoxia," providing a new framework for understanding the etiology of FGR in human pregnancy.  相似文献   

3.
Fetal growth restriction (FGR) greatly increases the risk of perinatal morbidity and mortality and is associated with increased uterine artery resistance and levels of oxidative stress. There are currently no available treatments for this condition. The hypothesis that the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Tempol) would improve uterine artery function and rescue fetal growth was tested in a mouse model of FGR, using the endothelial nitric oxide synthase knockout mouse (Nos3(-/-)). Pregnant Nos3(-/-) and control C57BL/6J mice were treated with the superoxide dismutase-mimetic Tempol (1 mmol/L) or vehicle from Gestational Day 12.5 to 18.5. Tempol treatment significantly increased pup weight (P < 0.05) and crown-rump length (P < 0.01) in C57BL/6J and Nos3(-/-) mice. Uterine artery resistance was increased in Nos3(-/-) mice (P < 0.05); Tempol significantly increased end diastolic velocity in Nos3(-/-) mice (P < 0.05). Superoxide production in uterine arteries did not differ between C57BL/6J and Nos3(-/-) mice but was significantly increased in placentas from Nos3(-/-) mice (P < 0.05). This was not reduced by Tempol treatment. Placental System A activity was reduced in Nos3(-/-) mice (P < 0.01); this was not improved by treatment with Tempol. Treatment of Nos3(-/-) mice with Tempol, however, was associated with reduced vascular density in the placental bed (P < 0.05). This study demonstrated that treatment with the antioxidant Tempol is able to improve fetal growth in a mouse model of FGR. This was associated with an increase in uterine artery blood flow velocity but not an improvement in uterine artery function or placental System A activity.  相似文献   

4.
Reductions in fetal plasma concentrations of certain amino acids and reduced amino acid transport in vesicle studies suggest impaired placental amino acid transport in human fetal growth restriction (FGR). In the present study, we tested the hypothesis of an impairment in amino acid transport in the ovine model of hyperthermia-induced FGR by determining transplacental and placental retention and total placental clearance of a branched-chain amino acid (BCAA) analog, the nonmetabolizable neutral amino acid aminocyclopentane-1-carboxylic acid (ACP), in singleton control (C) and FGR pregnancies at 135 days gestation age (dGA; term 147 dGA). At study, based on the severity of the placental dysfunction, FGR fetuses were allocated to severe (sFGR, n = 6) and moderate FGR (mFGR, n = 4) groups. Fetal (C, 3,801.91 +/- 156.83; mFGR, 2,911.33 +/- 181.35; sFGR, 1,795.99 +/- 238.85 g; P < 0.05) and placental weights (C, 414.38 +/- 38.35; mFGR, 306.23 +/- 32.41; sFGR, 165.64 +/- 28.25 g; P < 0.05) were reduced. Transplacental and total placental clearances of ACP per 100 g placenta were significantly reduced in the sFGR but not in the mFGR group, whereas placental retention clearances were unaltered. These data indicate that both entry of ACP into the placenta and movement from the placenta into fetal circulation are impaired in severe ovine FGR and support the hypothesis of impaired placental BCAA transport in severe human FGR.  相似文献   

5.
Idiopathic fetal growth restriction (FGR) is frequently associated with placental insufficiency. Previous reports have provided evidence that endocrine gland–derived vascular endothelial growth factor (EG-VEGF), a placental secreted protein, is expressed during the first trimester of pregnancy, controls both trophoblast proliferation and invasion, and its increased expression is associated with human FGR. In this study, we hypothesize that EG-VEGF-dependent changes in placental homeobox gene expressions contribute to trophoblast dysfunction in idiopathic FGR. The changes in EG-VEGF-dependent homeobox gene expressions were determined using a homeobox gene cDNA array on placental explants of 8–12 wks gestation after stimulation with EG-VEGF in vitro for 24 h. The homeobox gene array identified a greater-than-five-fold increase in HOXA9, HOXC8, HOXC10, HOXD1, HOXD8, HOXD9 and HOXD11, while NKX 3.1 showed a greater-than-two-fold decrease in mRNA expression compared with untreated controls. Homeobox gene NKX3.1 was selected as a candidate because it is a downstream target of EG-VEGF and its expression and functional roles are largely unknown in control and idiopathic FGR-affected placentae. Real-time PCR and immunoblotting showed a significant decrease in NKX3.1 mRNA and protein levels, respectively, in placentae from FGR compared with control pregnancies. Gene inactivation in vitro using short-interference RNA specific for NKX3.1 demonstrated an increase in BeWo cell differentiation and a decrease in HTR-8/SVneo proliferation. We conclude that the decreased expression of homeobox gene NKX3.1 downstream of EG-VEGF may contribute to the trophoblast dysfunction associated with idiopathic FGR pregnancies.  相似文献   

6.
7.
8.
N W Bruce 《Teratology》1977,16(3):327-331
The uterine artery of one horn of 13 rats was ligated on day 18 of gestation; the remaining horn was used as a control. The effect, four days later, on blood flow to the reproductive tract, was measured with radioactive microspheres and compared to the effect on fetal and placental weights. Fetal survival in the ligated horns, 41 percent, was significantly lower (P less than 0.05) than that in the control horns, 98 percent. Fetal and placental weights of the survivors in the ligated horns, 3.159 +/- 0.133 g (SE) and 450 +/- 18 mg respectively, were similarly lower than those in the control horns, 3.814 +/- 0.111 g and 529 +/- 27 mg respectively. Maternal placental blood flow closely reflected the weight of tissue being supplied and was similar in the ligated and control horns, 129 +/- 21 and 130 +/- 18 ml.min(-1). 100g(-1), respectively. Myometrial blood flow was again similar in the ligated and control horns, 34 +/- 5 and 37 +/- 4 ml.min(-1). 100 g(-1), respectively, and in the ovarian, middle and cervical sections of each horn. These results are compatible with the view that ligation causes only a temporary reduction in uterine blood flow which permanently checks placental and fetal, or placental thus fetal, growth. Blood flow then returns to normal levels compatible with the reduced weights of tissues being supplied.  相似文献   

9.

Background

Placental insufficiency is a major cause of antepartum stillbirth and fetal growth restriction (FGR). In affected pregnancies, delivery is expedited when the risks of ongoing pregnancy outweigh those of prematurity. Current tests are unable to assess placental function and determine optimal timing for delivery. An accurate, non-invasive test that clearly defines the failing placenta would address a major unmet clinical need. Proton magnetic resonance spectroscopy (1H MRS) can be used to assess the metabolic profile of tissue in-vivo. In FGR pregnancies, a reduction in N-acetylaspartate (NAA)/choline ratio and detection of lactate methyl are emerging as biomarkers of impaired neuronal metabolism and fetal hypoxia, respectively. However, fetal brain hypoxia is a late and sometimes fatal event in placental compromise, limiting clinical utility of brain 1H MRS to prevent stillbirth. We hypothesised that abnormal placental 1H MRS may be an earlier biomarker of intrauterine hypoxia, affording the opportunity to optimise timing of delivery in at-risk fetuses.

Methods and Findings

We recruited three women with severe placental insufficiency/FGR and three matched controls. Using a 3T MR system and a combination of phased-array coils, a 20×20×40 mm1H MRS voxel was selected along the ‘long-axis’ of the placenta with saturation bands placed around the voxel to prevent contaminant signals. A significant choline peak (choline/lipid ratio 1.35–1.79) was detected in all healthy placentae. In contrast, in pregnancies complicated by FGR, the choline/lipid ratio was ≤0.02 in all placentae, despite preservation of the lipid peak (p<0.001).

Conclusions

This novel proof-of-concept study suggests that in severe placental insufficiency/FGR, the observed 60-fold reduction in the choline/lipid ratio by 1H MRS may represent an early biomarker of critical placental insufficiency. Further studies will determine performance of this test and the potential role of 1H-MRS in the in-vivo assessment of placental function to inform timing of delivery.  相似文献   

10.

Background

We tested the hypothesis whether texture analysis (TA) from MR images could identify patterns associated with an abnormal neurobehavior in small for gestational age (SGA) neonates.

Methods

Ultrasound and MRI were performed on 91 SGA fetuses at 37 weeks of GA. Frontal lobe, basal ganglia, mesencephalon and cerebellum were delineated from fetal MRIs. SGA neonates underwent NBAS test and were classified as abnormal if ≥1 area was <5th centile and as normal if all areas were >5th centile. Textural features associated with neurodevelopment were selected and machine learning was used to model a predictive algorithm.

Results

Of the 91 SGA neonates, 49 were classified as normal and 42 as abnormal. The accuracies to predict an abnormal neurobehavior based on TA were 95.12% for frontal lobe, 95.56% for basal ganglia, 93.18% for mesencephalon and 83.33% for cerebellum.

Conclusions

Fetal brain MRI textural patterns were associated with neonatal neurodevelopment. Brain MRI TA could be a useful tool to predict abnormal neurodevelopment in SGA.  相似文献   

11.
12.
Heat exposure early in ovine pregnancy results in placental insufficiency and intrauterine growth restriction (PI-IUGR). We hypothesized that heat exposure in this model disrupts placental structure and reduces placental endothelial nitric oxide synthase (eNOS) protein expression. We measured eNOS protein content and performed immunohistochemistry for eNOS in placentas from thermoneutral (TN) and hyperthermic (HT) animals killed at midgestation (90 days). Placental histomorphometry was compared between groups. Compared with the TN controls, the HT group showed reduced delivery weights (457 +/- 49 vs. 631 +/- 21 g; P < 0.05) and a trend for reduced placentome weights (288 +/- 61 vs. 554 +/- 122 g; P = 0.09). Cotyledon eNOS protein content was reduced by 50% in the HT group (P < 0.03). eNOS localized similarly to the vascular endothelium and binucleated cells (BNCs) within the trophoblast of both experimental groups. HT cotyledons showed a reduction in the ratio of fetal to maternal stromal tissue (1.36 +/- 0.36 vs. 3.59 +/- 1.2; P< or = 0.03). We conclude that eNOS protein expression is reduced in this model of PI-IUGR and that eNOS localizes to both vascular endothelium and the BNC. We speculate that disruption of normal vascular development and BNC eNOS production and function leads to abnormal placental vascular tone and blood flow in this model of PI-IUGR.  相似文献   

13.

Study Overview

The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age.

Conclusion and Significance

Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system.  相似文献   

14.
阻断子宫动脉建立FGR大鼠模型的研究   总被引:1,自引:0,他引:1  
目的通过暂时阻断妊娠期大鼠子宫血供的方法建立子宫缺血引起胎儿生长受限的动物模型。方法根据大鼠子宫动脉是卵巢动脉的一个分支的解剖特点,于孕鼠妊娠第15天时施行手术暂时阻断卵巢动脉并于第21天行剖宫产术,术后称量新生胎仔体重及胎盘、脑、心、肝、肺、肾等重要脏器重量,对比各组间新生胎仔的预后的不同,并对照研究阻断血供10、20、30及40 min对胎仔的不同影响。结果妊娠晚期阻断孕鼠卵巢动脉20min可成功构建胎儿生长受限模型,这种方法与阻断动脉血流30或40 min相比,手术时间短,技术要求不高,胎仔死亡率与对照组差异无显著性(P>0.05)。各实验组较对照组新生胎仔体重及胎盘、各重要脏器重量均明显降低(P<0.05)。结论通过阻断卵巢动脉从而阻断子宫动脉血流,成功建立缺血缺氧性FGR孕鼠模型。该模型重复性好,操作简便,并可成功设立同体对照,为进行FGR相关的产科理论研究提供了一个有利的技术平台。  相似文献   

15.
16.
To determine the capacity of the fetus to adapt to chronic O2 deficiency produced by decreased placental perfusion in the early development of growth retardation, we embolized the umbilical placental vascular bed of fetal sheep for a period of 9 days. Fetal umbilical placental embolization decreased arterial O2 content by 39%, decreased total placental blood flow by 33%, and produced a 20% reduction in mean fetal body weight. Neither the combined ventricular output nor the regional blood flow distribution was significantly different between the 8 growth-retarded and 7 normally grown fetuses despite the 39% decrease in fetal arterial O2 content. Thus a 33% reduction in total placental blood flow restricts normal fetal growth, but does not exceed the placental circulatory reserve capacity necessary to maintain normal basal metabolic oxygenation. Because the proportion of combined ventricular output to the placenta at rest is decreased in late IUGR fetuses but not in early IUGR fetuses, despite chronic oxygen deficiency, we conclude that the growth retarded fetus maintains a normal regional blood flow distribution until the placental circulatory reserve capacity is depleted.  相似文献   

17.
18.
Fetuses from gilts with estrogen receptor (ESR) genotype AA (AA-AA and AA-AB) and BB (BB-AB and BB-BB) were compared at Day 35/36 of pregnancy, to examine whether fetal ESR genotype nested within maternal ESR genotype would affect fetal traits. Furthermore the relation of fetal body weight and fetal heart weight to various placental traits were evaluated relative to ESR genotype. Fetal and placental weight and length, and implantation surface area were not affected by fetal ESR genotype nested within maternal ESR genotype. Fetal weight was related similarly to placental length, placental weight, and implantation surface area: up to a certain threshold value (40 cm, 40 g and 250 cm2, respectively), an increase in the trait was associated with an increase of fetal weight. Thereafter, fetal weight did not change anymore. Thus, at Day 35/36 of pregnancy porcine fetuses seem to have a maximum growth potential. The percentage of AA-AA fetuses that had not reached this maximum growth potential was larger than of the other three genotype combinations studied, and therefore a higher subsequent fetal mortality may be expected in this group. Hearts of AA-AB fetuses were significantly heavier than those of BB-AB and BB-BB fetuses and tended to be heavier than those of AA-AA fetuses. The reason for this hypertrophy is unclear, but might be related to a difference in placental vascularity. Heart weight of fetuses from BB gilts increased with fetal weight, while heart weights of fetuses from AA gilts did not. Heart weight increased with an increase of placental length and implantation surface area up to 51 cm and 437 cm2, respectively, and thereafter decreased again. For BB-AB fetuses a similar relation was found between heart weight and placental weight, while heart weight of the other three genotype combinations remained unaffected as placental weight increased. The fetus and placenta are continuously changing during early pregnancy, therefore different mechanisms may change the demands for cardiac output. However, keeping in mind that placental size and blood volume are relatively large, placental vascularity and vascular development may play a major role. Therefore, further research on heart size, placental size and vascularity, relative to ESR genotype, is recommended.  相似文献   

19.
In this study we tested the hypothesis that expression of heme oxygenases HO-1 and HO-2, which are responsible for the production of carbon monoxide, are reduced in the placenta and placental bed of pregnancies complicated by preeclampsia (PE) and fetal growth restriction (FGR) compared with control third-trimester pregnancies. Placental protein expression was determined by Western blotting (n=10 in each group) and immunohistochemistry (controls n=18, PE n=19, FGR n=10). Extravillous trophoblast expression was determined by immunohistochemistry of placental bed biopsy samples (controls n=17, PE n=19, FGR n=10). Western blot analysis of placental homogenates showed no overall differences in HO-2 among groups. However, immunohistochemical analysis showed a reduction in HO-2 expression in endothelial cells in both abnormal groups (PE P<0.01; FGR P<0.0005 vs. control group) but no differences in villous trophoblast staining. HO-1 was undetectable by Western blotting in control and abnormal pregnancies and immunoreactivity was very low, suggesting that there is little HO-1 in the placenta. Within the placental bed, HO-2 but not HO-1 was detected on all populations of extravillous trophoblast, but expression of HO-2 or HO-1 did not change in PE or FGR. The reduced expression of HO-2 on endothelial cells in PE and FGR may be responsible for reduced placental blood flow in these conditions. The data do not show changes in HO in the placental bed in PE or FGR.  相似文献   

20.
To investigate the effects of celecoxib on fetal growth, and placental prostanoid and nitric oxide (NO) production in fetal rabbits, pregnant rabbits received celecoxib (30 mg/kg per day) from 13 to 20 days (Cel-A), from 13 to 28 days (Cel-B), or vehicle from 13 to 28 days gestation. Fetal body and organ weights, and measurements of linear growth were recorded. The placentas were weighed and analyzed for prostaglandins (PGs), NO oxidation products (NOx), and total cellular protein levels. Placental prostaglandin E2 (PGE2) and NOx levels increased (P < or = 0.05), while thromboxane B2 levels were suppressed (P < or = 0.01) in Cel-B group. Tail length and brain weight were greater, while lung weights were lower in the Cel-B group (P < or = 0.05). Maternal administration of celecoxib appears to preferentially increase placental vasodilators and decrease placental TxA2, suggesting that the drug may increase uteroplacental perfusion without adverse fetal outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号