首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Exploring the factors governing the maintenance and breakdown of cooperation between mutualists is an intriguing and enduring problem for evolutionary ecology, and symbioses between ants and plants can provide useful experimental models for such studies. Hundreds of tropical plant species have evolved structures to house and feed ants, and these ant–plant symbioses have long been considered classic examples of mutualism. Here, we report that the primary ant symbiont, Allomerus cf. demerarae, of the most abundant ant-plant found in south-east Peru, Cordia nodosa Lam., castrates its host plant. Allomerus workers protect new leaves and their associated domatia from herbivory, but destroy flowers, reducing fruit production to zero in most host plants. Castrated plants occupied by Allomerus provide more domatia for their associated ants than plants occupied by three species of Azteca ants that do not castrate their hosts. Allomerus colonies in larger plants have higher fecundity. As a consequence, Allomerus appears to benefit from its castration behaviour, to the detriment of C. nodosa. The C. nodosa–ant system exhibits none of the retaliatory or filtering mechanisms shown to stabilize cheating in other cooperative systems, and appears to persist because some of the plants, albeit a small minority, are inhabited by the three species of truly mutualistic Azteca ants.  相似文献   

2.
Studies of ant–plant relationships elucidate how top-down effects of the third trophic level can affect the biomass, richness, and/or species composition of plants. Although widespread in the neotropics, few studies have so far examined the direct effects of ants on plant fitness. Here, through experimental manipulation (ant-exclusion) under natural conditions, we examined the effect of ant visitation to extrafloral nectaries on leaf herbivory and fruit set in Chamaecrista debilis in the Brazilian savanna. As opposed to other Chamaecrista species, our results showed that visiting ants (15 species) significantly reduce herbivory and increase fruit set by more than 50% compared to plants from which ants were excluded. This mutualistic system is facultative in nature, and corroborates the potential beneficial role of exudate-feeding ants as anti-herbivore agents of tropical plants.  相似文献   

3.
Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant–EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant–ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales.  相似文献   

4.

Background and Aims

Functional groups of species interact and coevolve in space and time, forming complex networks of interacting species. A long-term study of temporal variation of an ant–plant network is presented with the aims of: (1) depicting its structural changes over a 20-year period; (2) detailing temporal variation in network topology, as revealed by nestedness and modularity analysis and other parameters (i.e. connectance, niche overlap); and (3) identifying long-term turnover in taxonomic structure (i.e. switches in ant resource use or plant visitor assemblages according to taxa).

Methods

Fieldwork was carried out at La Mancha, Mexico, and ant–plant interactions were observed between 1989 and 1991, between 1998 and 2000, and between May 2010 and 2011. Occurrences of ants on extrafloral nectaries (EFNs) were recorded. The resulting ant–plant networks were constructed from qualitative presence–absence data determined by a species–species matrix defined by the frequency of occurrence of each pairwise ant–plant interaction.

Key Results

Network variation across time was stable and a persistent nested structure may have contributed to the maintenance of resilient and species-rich communities. Modularity was lower than expected, especially in the most recent networks, indicating that the community exhibited high overlap among interacting species (e.g. few species were hubs in the more recent network, being partly responsible for the nested pattern). Structurally, the connections created among modules by super-generalists gave cohesion to subsets of species that otherwise would remain unconnected. This may have allowed an increasing cascade-effect of evolutionary events among modules. Mutualistic ant–plant interactions were structured 20 years ago mainly by the subdominant nectarivorous ant species Camponotus planatus and Crematogaster brevispinosa, which monopolized the best extrafloral nectar resources and out-competed other species with broader feeding habits. Through time, these ants, which are still present, lost their position as network hubs and diminished in their importance in structuring the network; simultaneously, plants gained in importance.

Conclusions

The long-term network analysis reveals a decrease in attended plant species richness, a notable increase in plant species participation from 1990 to 2010 (sustained by less plant taxonomic similarity in the older 1990 network), an increase in the number of ant species and a diminishing dominance of super-generalist ants. The structure of the community has remained highly nested and connected with low modularity, suggesting overall a more participative, homogeneous, cohesive interaction network. Although previous studies have suggested that interactions between ants and EFN-bearing plants are susceptible to seasonality, abiotic factors and perturbation, this cohesive structure appears to be the key for biodiversity and community maintenance.  相似文献   

5.
Recent research has shown that many mutualistic communities display non-random structures. While our understanding of the structural properties of mutualistic communities continues to improve, we know little of the biological variables resulting in them. Mutualistic communities include those formed between ants and extrafloral (EF) nectar-bearing plants. In this study, we examined the contributions of plant and ant abundance, plant and ant size, and plant EF nectar resources to the network structures of nestedness and interaction frequency of ant–plant networks across five sites within one geographic locality in the Sonoran Desert. Interactions between ant and plant species were largely symmetric. That is, ant and plant species exerted nearly equivalent quantitative interaction effects on one another, as measured by their frequency of interaction. The mutualistic ant–plant networks also showed nested patterns of structure, in which there was a central core of generalist ant and plant species interacting with one another and few specialist–specialist interactions. Abundance and plant size and ant body size were the best predictors of symmetric interactions between plants and ants, as well as nestedness. Despite interactions in these communities being ultimately mediated by EF nectar resources, the number of EF nectaries had a relatively weak ability to explain variation in symmetric interactions and nestedness. These results suggest that different mechanisms may contribute to structure of bipartite networks. Moreover, our results for ant–plant mutualistic networks support the general importance of species abundances for the structure of species interactions within biological communities.  相似文献   

6.
To document a relation between abundance of arboreal, predatory tiger beetles, their ant prey, and extrafloral nectaries attracting the ants, we gathered data from more than 10 species of native and introduced trees and large, tree‐like perennial plants in Lanao del Sur Province, Mindanao, Philippines. All specimens of tiger beetles (two Tricondyla and two Neocollyris species, all endemic to the country) were noted on five tree species characterized by presence of extrafloral nectaries, including three alien/invasive and two native ones. Invasive Spathodea campanulata and native Hibiscus tiliaceus were the most inhabited ones (respectively, 56% and 19% of beetles). Presence of tiger beetles on these trees most probably depends on high abundance of ants, which are typical prey for arboreal Cicindelidae, while occurrence of ants can result from presence of extrafloral nectaries on different parts of the plants. This suggests a new mutualistic insect–plant interaction between native and invasive species.  相似文献   

7.
The effects of herbivory on plant fitness are integrated over a plant??s lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant?Cplant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant??s growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.  相似文献   

8.
Plants with extrafloral nectaries attract a variety of ant species, in associations commonly considered mutualistic. However, the results of such interactions can be context dependent. Turnera subulata is a shrub widely distributed among disturbed areas which has extrafloral nectaries at the base of leaves. Here, we evaluated whether the ants associated with T. subulata (i) vary in space and/or time; (ii) respond to simulated herbivory, and (iii) reduce herbivory rates. For this, we quantified the abundance and species richness of ants associated with T. subulata throughout the day in six different sites and the defensive capability of these ants under simulated herbivory in the leaves and stems of T. subulata plants (N = 60). We also checked the proportion of the lost leaf area and quantified leaf damage by chewing herbivores in the host plant. We found that a total of 21 ant species associated with the host plant. Species composition showed significant variation across the sampled sites and throughout the day. Visitation rates and predation by ants were higher in plant stems than in leaves. In general, herbivory rates were not correlated with ant association or activity, with the exception of the proportion of leaf area consumed; there was a significant lower herbivory rate on plants in which ants defended the leaves. Our results suggest that the benefits of association may depend on the ecological context. This context dependence may mask the correlation between the defense of ants and herbivory rates.  相似文献   

9.
Tropical tree-climbing lianas form paths that benefit foraging of dominant ants which might protect the host tree against herbivores. In contrast, lianas are often associated with negative effects on growth and reproduction of host trees due to light obstruction, structural stress and other negative effects. It is unclear if dominant ants could mitigate the negative effects of lianas on host plants. We investigated how lianas and carton nest ants (Azteca chartifex) affected herbivory and reproductive structures of the host tree Byrsonima sericea. Considering 68 trees, almost half of them were naturally colonized by A. chartifex nests (32 trees). We removed lianas from half of the trees (34), establishing a factorial sampling design between A. chartifex and liana presence. We sampled ants and leaf herbivory before and after removing lianas, and measured plant fitness in two consecutive years after removing lianas. Liana removal had no effect on A. chartifex foraging, on leaf herbivory and flower-fruit conversion of host plants. However, A. chartifex decreased leaf herbivory and increased B. sericea flower-fruit conversion irrespective of lianas presence. A noticeable positive effect of ants was detected only in the second year of the experiment, consistently on all plants at each experimental level. The reproductive conditions of the first year resulted in most plants with more than 75% flower-to-fruit conversion success, regardless of the presence of A. chartifex, a success sustained only on those ant-colonized plants in the second year. Our results contribute to understanding multi-trophic interactions in tropical forest canopies as we demonstrated i) that dominant arboreal ants can benefit plants even in a non-obligatory interaction and ii) that the influence of lianas on its host tree is context-dependent, presenting even neutral effects depending on habitat type and species involved.  相似文献   

10.
Tillberg CV 《Oecologia》2004,140(3):506-515
In ant–plant symbioses, the behavior of ant inhabitants affects the nature of the interaction, ranging from mutualism to parasitism. Mutualistic species confer a benefit to the plant, while parasites reap the benefits of the interaction without reciprocating, potentially resulting in a negative impact on the host plant. Using the ant–plant symbiosis between Cordia alliodora and its ant inhabitants as a model system, I examine the costs and benefits of habitation by the four most common ant inhabitants at La Selva Biological Station, Costa Rica. Costs are measured by counting coccoids associated with each ant species. Benefits include patrolling behavior, effectiveness at locating resources, and recruitment response. I also compare the diets of the four ant species using stable isotope analysis of nitrogen (N) and carbon (C). Ants varied in their rates of association with coccoids, performance of beneficial behaviors, and diet. These differences in cost, benefit, and diet among the ant species suggest differences in the nature of the symbiotic relationship between C. alliodora and its ants. Two of the ant species behave in a mutualistic manner, while the other two ant species appear to be parasites of the mutualism. I determined that the mutualistic ants feed at a higher trophic level than the parasitic ants. Behavioral and dietary evidence indicate the protective role of the mutualists, and suggest that the parasitic ants do not protect the plant by consuming herbivores.  相似文献   

11.
Ant–plant interactions have mainly been considered as a protection mutualism where ants increase plant performance through protection from herbivory. However, host plants may also benefit from nutrients deposited by ants. Nitrogen limits the plant growth in most terrestrial ecosystems and the nutrient exchange between ants and plants may be an important mechanism operating in ant–plant interactions. In this study, we quantified the exchange of macronutrients (carbon and nitrogen) between ants and plants, using the Asian weaver ant Oecophylla smaragdina as a model species in a mango agroecosystem. A method was developed with which the amount of nitrogen retrieved to their host trees could be predicted by the trail density of O. smaragdina. Ant nutrient consumption was calculated based on data on O. smaragdina abundance and per capita consumption rates obtained in laboratory colonies. On a yearly basis, the influx of nitrogen to the host tree, originating from captured prey, averaged 14.4 (range 8.0–46.4) kg N ha?1 y?1. The loss of carbon from the host tree due to ant consumption of exudates from nectaries and tended homopterans averaged 278.1 (range 149.3–939.9) kg C ha?1 y?1. O. smaragdina may provide their host plant with a significant source of nitrogen albeit a substantial amount of carbon is consumed from the host plant. This study reveals that the flow of nutrients between ants and plants may play a critical and underestimated role in ant–plant mutualisms.  相似文献   

12.
In protective ant–plant mutualisms, plants offer ants food (such as extrafloral nectar and/or food bodies) and ants protect plants from herbivores. However, ants often negatively affect plant reproduction by deterring pollinators. The aggressive protection that mutualistic ants provide to some myrmecophytes may enhance this negative effect in comparison to plant species that are facultatively protected by ants. Because little is known about the processes by which myrmecophytes are pollinated in the presence of ant guards, we examined ant interactions with herbivores and pollinators on plant reproductive organs. We examined eight myrmecophytic and three nonmyrmecophytic Macaranga species in Borneo. Most of the species studied are pollinated by thrips breeding in the inflorescences. Seven of eight myrmecophytic species produced food bodies on young inflorescences and/or immature fruits. Food body production was associated with increased ant abundance on inflorescences of the three species observed. The exclusion of ants from inflorescences of one species without food rewards resulted in increased herbivory damage. In contrast, ant exclusion had no effect on the number of pollinator thrips. The absence of thrips pollinator deterrence by ants may be due to the presence of protective bracteoles that limit ants, but not pollinators, from accessing flowers. This unique mechanism may account for simultaneous thrips pollination and ant defense of inflorescences.  相似文献   

13.
Comprehension of the benefits involved in mutualisms is crucial to disentangle the role of interactions in the structure and functioning of populations, communities and ecosystems. In ant-plant mutualisms, benefits provided by plants to ants are immediately recognizable, but reverse benefits are less obvious, conditional and accumulate over longer time spans. Here we tested the hypothesis that the ant Azteca muelleri simultaneously provides multiple benefits to its host plant (Cecropia glaziovii), ultimately increasing plant performance. We planted seedlings and experimentally prevented ant colonization for half of them. Over 4.5 years we quantified the effects of ant presence or absence on plant growth, herbivory levels, fungal infection, fertilization via ant debris and changes in defense strategies. Ant colonization increased plant height by 125% compared to ant-free plants. Such an improvement in plant performance can be explained because plants with ants faced less herbivory, lower prevalence of pathogenic fungi, invested less in foliar trichomes and had more foliar nitrogen. We thus confirmed that ant mutualists provide cumulative benefits including nutritional benefits, effective defense and lower investment into other defenses – which result in increased plant growth. We highlight the importance of long-term experiments that simultaneously evaluate a multiplicity of potential ant effects to better understand their relative contribution to the performance of the mutualistic partner.  相似文献   

14.
Associational effects—in which the vulnerability of a plant to herbivores is influenced by its neighbors—have been widely implicated in mediating plant–herbivore interactions. Studies of associational effects typically focus on interspecific interactions or pest–crop dynamics. However, associational effects may also be important for species with intraspecific variation in defensive traits. In this study, we observed hundreds of Datura wrightii—which exhibits dimorphism in its trichome phenotype—from over 30 dimorphic populations across California. Our aim was to determine whether a relationship existed between the trichome phenotype of neighboring conspecifics and the likelihood of being damaged by four species of herbivorous insects. We visited plants at three timepoints to assess how these effects vary both within and between growing seasons. We hypothesized that the pattern of associational effects would provide rare morphs (i.e., focal plants that are a different morph than their neighbors) with an advantage in the form of reduced herbivory, thereby contributing to the negative frequency‐dependent selection previously documented in this system. We found the best predictor of herbivory/herbivore presence on focal plants was the phenotype of the focal plant. However, we also found some important neighborhood effects. The total number of plants near a focal individual predicted the likelihood and/or magnitude of herbivory by Tupiochoris notatus, Lema daturaphila, and Manduca sexta. We also found that velvety focal plants with primarily sticky neighbors are more susceptible to infestation by Tupiochoris notatus and Lema daturaphila. This does not align with the hypothesis that associational effects at the near‐neighbor scale contribute to a rare‐morph advantage in this system. Overall, the results of our study show that the number and trichome‐morph composition of neighboring conspecifics impact interactions between D. wrightii and insect herbivores.  相似文献   

15.
F. F. Xu  J. Chen 《Insectes Sociaux》2010,57(3):343-349
In facultative ant–plant interactions, ants may compete with each other for food provided by extrafloral nectar (EFN) plants. We studied resource competition and plant defense in a guild of ants that use the same EFN resource provided by two species of Passiflora in a seasonal rain forest in tropical China. At least 22 ant species were recorded using the EFN resource, although some of those species were rare. Among these ants, Paratrechina sp.1 and Dolichoderus thoracicus were more aggressive than other species. Ant aggressiveness measured as ant behavioral dominance index (BDI) was positively correlated with ant abundance on the Passiflora species studied. Ant BDI was also positively correlated to the protection that ants provided against herbivory. In Passiflora siamica, the number of workers patrolling on the plants did negatively correlate with average leaf loss per plant. We conclude that in this facultative Passiflora–ant system, plant defense upon herbivore was indeed influenced by the total number of ants present on plant and the aggressiveness of these ants.  相似文献   

16.
Concurrent interactions and the availability of resources (e.g., light) affect the cost/benefit balance during mutualistic and antagonistic interactions, as well as plant resource allocation patterns. Mycorrhizal interactions and herbivory concur in most plants, where mycorrhizae can enhance the uptake of soil nutrients by plants as well as consuming a large fraction of the plant's carbon, and defoliation usually reduces light interception and photosynthesis, thereby causing direct losses to the hosts of mycorrhizal fungi. Both types of interactions affect the carbon budget of their host plants and thus we predict that the relative costs of herbivory and mycorrhizal colonization will increase when photosynthesis is reduced, for instance in light limited environments. We conducted a greenhouse experiment using Datura stramonium to investigate the effects of defoliation and mycorrhizal inoculation on the resource allocation patterns in two different light environments. Defoliated plants overcompensated in terms of leaf mass in both light environments, but total seed mass per fruit was negatively affected by defoliation in both light environments. Mycorrhizal inoculation had a positive effect on vegetative growth and the leaf nitrogen content, but defoliation negates the benefit of mycorrhizal interactions in terms of the leaf nitrogen content. In general, D. stramonium compensated for the relative costs of concurrent mycorrhizal interactions and defoliation; plants that lacked both interactions exhibited the same performance as plants with both types of interactions.  相似文献   

17.
We reviewed the evidence on the role of ants as plant biotic defenses, by conducting meta-analyses for the effects of experimental removal of ants on plant herbivory and fitness with data pooled from 81 studies. Effects reviewed were plant herbivory, herbivore abundance, hemipteran abundance, predator abundance, plant biomass and reproduction in studies where ants were experimentally removed (n = 273 independent comparisons). Ant removal exhibited strong effects on herbivory rates, as plants without ants suffered almost twice as much damage and exhibited 50% more herbivores than plants with ants. Ants also influenced several parameters of plant fitness, as plants without ants suffered a reduction in biomass (−23.7%), leaf production (−51.8%), and reproduction (−24.3%). Effects were much stronger in tropical regions compared to temperate ones. Tropical plants suffered almost threefold higher herbivore damage than plants from temperate regions and exhibited three times more herbivores. Ant removal in tropical plants resulted in a decrease in plant fitness of about 59%, whereas in temperate plants this reduction was not statistically significant. Ant removal effects were also more important in obligate ant–plants (=myrmecophytes) compared to plants exhibiting facultative relationships with hemiptera or those plants with extrafloral nectaries and food bodies. When only tropical plants were considered and the strength of the association between ants and plants taken into account, plants with obligate association with ants exhibited almost four times higher herbivory compared to plants with facultative associations with ants, but similar reductions in plant reproduction. The removal of a single ant species increased plant herbivory by almost three times compared to the removal of several ant species. Altogether, these results suggest that ants do act as plant biotic defenses, but the effects of their presence are more pronounced in tropical systems, especially in myrmecophytic plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. N. P. de U. Barbosa, L. Diniz, Y. Oki and F. Pezzini contributed equally to this work and are listed in alphabetical order.  相似文献   

18.
The outcome of any interspecific interaction is often determined by the ecological context in which the interacting species are embedded. Plant ontogeny may represent an important source of variation in the outcome of ant–plant mutualisms, as the level of investment in ant rewards, in alternative (non‐biotic) defenses, or both, may be modulated by the plant's developmental stage. In addition, the abundance and identities of the ants involved in the interaction may change during ontogeny of the host‐plant. Here, we evaluated if plant ontogeny affects the interaction between ants and a savanna tree species (Caryocar brasiliense) that produces extrafloral nectar. We found fewer ants per branch and fewer species of ants per tree in juvenile than in reproductive trees of medium and large size. In addition, large‐sized reproductive trees were more likely to host more aggressive ants than were medium‐sized reproductive or juvenile trees. Such differences strongly affected the outcome of the interaction between ants and their host‐plants, as the magnitude of the effect of ants on herbivory was much stronger for large trees than for juvenile ones. The fact that we did not find significant ontogenetic variation in the concentration of leaf tannins suggests that the observed differences in herbivory did not result from a differential investment in chemical defenses among different‐sized plants. Overall, the results of our study indicate that the developmental stage of the host plant is an important factor of conditionality in the interaction between C. brasiliense and arboreal foraging ants.  相似文献   

19.
Extrafloral nectar of plants and honeydew of hemipterans are the common mediators of facultative interactions that involve ants as a mobile strategy of defence. The outcome of these interactions can vary from mutualistic to commensalistic or even antagonistic, depending on the ecological context and the interacting species. Here, we explore a novel, three-partner interaction involving ants, the coreid Dersagrena subfoveolata (Hemiptera) and the extrafloral nectaries (EFNs) bearing plant Senna aphylla (Fabaceae) in semi-arid Northwest Argentina. We surveyed natural areas and conducted ant exclusion experiments, to understand how each pairwise interaction influences the overall outcome among the three interacting parts. The outcome of the interactions was assessed for experimental plants as the reproductive output and herbivore abundances and for coreids as predator abundances. We found that the coreids occurred exclusively on S. aphylla plants and that at least nine ant species interacted with the EFNs as well as with the coreids. Coreid occurrence and abundance depended on ant densities, which in turn, was determined by the presence of actively secreting EFNs. Coreid and ant presence did not influence plant reproductive success, and ants provided to coreids some biotic defence, mainly against vespid wasp predators, but had no effect on non-coreid herbivores. We conclude that the interaction outcome is commensalistic between ants and plants (assuming that EF nectar is not costly for the plant), antagonistic between coreids and plants, and mutualistic between coreids and ants. The sum of all outcomes is net positive effect for ants and coreids, and net slightly negative to neutral for plants.  相似文献   

20.
Most terrestrial plants interact with diverse clades of mycorrhizal and root-endophytic fungi in their roots. Through belowground plant–fungal interactions, dominant plants can benefit by interacting with host-specific mutualistic fungi and proliferate in a community based on positive plant–mutualistic fungal feedback. On the other hand, subordinate plant species may persist in the community by sharing other sets (functional groups) of fungal symbionts with each other. Therefore, revealing how diverse clades of root-associated fungi are differentially hosted by dominant and subordinate plant species is essential for understanding plant community structure and dynamics. Based on 454-pyrosequencing, we determined the community composition of root-associated fungi on 36 co-occurring plant species in an oak-dominated forest in northern Japan and statistically evaluated the host preference phenotypes of diverse mycorrhizal and root-endophytic fungi. An analysis of 278 fungal taxa indicated that an ectomycorrhizal basidiomycete fungus in the genus Lactarius and a possibly endophytic ascomycete fungus in the order Helotiales significantly favored the dominant oak (Quercus) species. In contrast, arbuscular mycorrhizal fungi were generally shared among subordinate plant species. Although fungi with host preferences contributed to the compartmentalization of belowground plant–fungal associations, diverse clades of ectomycorrhizal fungi and possible root endophytes were associated not only with the dominant Quercus but also with the remaining plant species. Our findings suggest that dominant-ectomycorrhizal and subordinate plant species can host different subsets of root-associated fungi, and diverse clades of generalist fungi can counterbalance the compartmentalization of plant–fungal associations. Such insights into the overall structure of belowground plant–fungal associations will help us understand the mechanisms that facilitate the coexistence of plant species in natural communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号