首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The biogenesis of the proton pump V-ATPase commences with the assembly of the proton pore sector V0 in the endoplasmic reticulum (ER). This process occurs under the control of a group of assembly factors whose mutations have recently been shown to cause glycosylation disorders with overlapping phenotypes in humans. Using whole exome sequencing, we demonstrate that mutations of the accessory V-ATPase subunit ATP6AP2 cause a similar disease characterized by hepatosteatosis, lipid abnormalities, immunodeficiency and cognitive impairment. ATP6AP2 interacts with members of the V0 assembly complex, and its ER localization is crucial for V-ATPase activity. Moreover, ATP6AP2 mutations can cause developmental defects and steatotic phenotypes when introduced into Drosophila. Altogether, our data suggest that these phenotypes are the result of a pathogenetic cascade that includes impaired V-ATPase assembly, defective lysosomal acidification, reduced MTOR signaling and autophagic misregulation.  相似文献   

2.
Agrobacterium tumefaciens VirB10 couples inner membrane (IM) ATP energy consumption to substrate transfer through the VirB/D4 type IV secretion (T4S) channel and also mediates biogenesis of the virB -encoded T pilus. Here, we determined the functional importance of VirB10 domains denoted as the: (i) N-terminal cytoplasmic region, (ii) transmembrane (TM) α-helix, (iii) proline-rich region (PRR) and (iv) C-terminal β-barrel domain. Mutations conferring a transfer- and pilus-minus (Tra-, Pil-) phenotype included PRR deletion and β-barrel substitution mutations that prevented VirB10 interaction with the outer membrane (OM) VirB7–VirB9 channel complex. Mutations permissive for substrate transfer but blocking pilus production (Tra+, Pil-) included a cytoplasmic domain deletion and TM domain insertion mutations. Another class of Tra+ mutations also selectively disrupted pilus biogenesis but caused release of pilin monomers to the milieu; these mutations included deletions of α-helical projections extending from the β-barrel domain. Our findings, together with results of Cys accessibility studies, indicate that VirB10 stably integrates into the IM, extends via its PRR across the periplasm, and interacts via its β-barrel domain with the VirB7–VirB9 channel complex. The data further support a model that distinct domains of VirB10 regulate formation of the secretion channel or the T pilus.  相似文献   

3.
Aerobic glucose metabolism is indispensable for metabolically active cells; however, the regulatory mechanism of efficient energy generation in the highly evolved mammalian retina remains incompletely understood. Here, we revealed an unsuspected role for (pro)renin receptor, also known as ATP6AP2, in energy metabolism. Immunoprecipitation and mass spectrometry analyses identified the pyruvate dehydrogenase (PDH) complex as Atp6ap2-interacting proteins in the mouse retina. Yeast two-hybrid assays demonstrated direct molecular binding between ATP6AP2 and the PDH E1 β subunit (PDHB). Pdhb immunoreactivity co-localized with Atp6ap2 in multiple retinal layers including the retinal pigment epithelium (RPE). ATP6AP2 knockdown in RPE cells reduced PDH activity, showing a predilection to anaerobic glycolysis. ATP6AP2 protected PDHB from phosphorylation, thus controlling its protein stability. Down-regulated PDH activity due to ATP6AP2 knockdown inhibited glucose-stimulated oxidative stress in RPE cells. Our present data unraveled the novel function of ATP6AP2/(P)RR as a PDHB stabilizer, contributing to aerobic glucose metabolism together with oxidative stress.  相似文献   

4.
The (pro)renin receptor [(P)RR, ATP6AP2] is a multifunctional transmembrane protein that activates local renin–angiotensin systems, but also interacts with Wnt pathways and vacuolar H+‐ATPase (V‐ATPase) during organogenesis. The aim of this study was to characterize the role of ATP6AP2 in the cell cycle in more detail. ATP6AP2 down‐regulation by siRNA in renal As4.1 cells resulted in a reduction in the rate of proliferation and a G0/G1 phase cell cycle arrest. We identified a number of novel target genes downstream of ATP6AP2 knock‐down that were related to the primary cilium (Bbs‐1, Bbs‐3, Bbs‐7, Rabl5, Ttc26, Mks‐11, Mks‐5, Mks‐2, Tctn2, Nme7) and the cell cycle (Pierce1, Clock, Ppif). Accordingly, the number of cells expressing the primary cilium was markedly increased. We found no indication that these effects were dependent of V‐ATPase activity, as ATP6AP2 knock‐down did not affect lysosomal pH and bafilomycin A neither influenced the ciliary expression pattern nor the percentage of ciliated cells. Furthermore, ATP6AP2 appears to be essential for mitosis. ATP6AP2 translocated from the endoplasmatic reticulum to mitotic spindle poles (pro‐, meta‐ and anaphase) and the central spindle bundle (telophase) and ATP6AP2 knock‐down results in markedly deformed spindles. We conclude that ATP6AP2 is necessary for cell division, cell cycle progression and mitosis. ATP6AP2 also inhibits ciliogenesis, thus promoting proliferation and preventing differentiation.  相似文献   

5.
Human furin is a calcium-dependent serine endoprotease that can efficiently cleave many precursor proteins on the carboxyl side of the consensus cleavage sequence, -Arg-X-Lys/Arg-Arg-, both in vivo and in vitro. Analysis of furin proteins in extracts of cells infected with a vaccinia recombinant expressing human furin show that the enzyme is present as two prominent forms of 90 and 96 kDa. Because the structurally related bacterial subtilisins require endoproteolytic removal of the NH2-terminal pro-region by an autocatalytic intramolecular cleavage, we speculated that the size heterogeneity in the furin doublet similarly may result from a proteolytic removal of an NH2-terminal pro-region. Here we report identification of the 90-kDa furin NH2 terminus and, based on the reported sequence of the furin cDNA, demonstrate that this furin protein is derived from a larger precursor by an endoproteolytic cleavage on the COOH-terminal side of a consensus furin cleavage site, -Arg-Thr-Lys-Arg107-. Expression of mutant furin molecules containing an altered cleavage site (Arg104----Ala or Arg107----Gly) resulted in the production of only the 96-kDa furin protein. Assays of furin-dependent cleavage of a protein substrate in vitro showed that proteolytic activity was associated with the 90-kDa and not the 96-kDa furin protein, demonstrating that removal of the NH2-terminal pro-region is required for furin activity. Expression of a third furin construct containing a mutation of the active site aspartate (Asp153----Asn) similarly resulted in the expression of only the 96-kDa protein, suggesting that furin activation occurs by an autoproteolytic cleavage. Finally, the production of 90-kDa furin from either site-directed furin mutant could not be potentiated by overexpressing active furin, suggesting that the autoproteolytic activation was an intramolecular event.  相似文献   

6.
The molecular biology of spuma or foamy retroviruses is different from that of the other members of the Retroviridae. Among the distinguishing features, the N-terminal domain of the foamy virus Env glycoprotein, the 16-kDa Env leader protein Elp, is a component of released, infectious virions and is required for particle budding. The transmembrane protein Elp specifically interacts with N-terminal Gag sequences during morphogenesis. In this study, we investigate the mechanism of Elp release from the Env precursor protein. By a combination of genetic, biochemical, and biophysical methods, we show that the feline foamy virus (FFV) Elp is released by a cellular furin-like protease, most likely furin itself, generating an Elp protein consisting of 127 amino acid residues. The cleavage site fully conforms to the rules for an optimal furin site. Proteolytic processing at the furin cleavage site is required for full infectivity of FFV. However, utilization of other furin proteases and/or cleavage at a suboptimal signal peptidase cleavage site can partially rescue virus viability. In addition, we show that FFV Elp carries an N-linked oligosaccharide that is not conserved among the known foamy viruses.  相似文献   

7.
Proteolytic cleavage of the Hendra virus fusion (F) protein results in the formation of disulfide-linked F1 and F2 subunits, with cleavage occurring after residue K109 in the sequence GDVK/L. This unusual cleavage site and efficient propagation of Hendra virus in a furin-deficient cell line indicate that the Hendra F protein is not cleaved by furin, the protease responsible for proteolytic activation of many viral fusion proteins. To identify the subcellular site of Hendra F processing, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F were metabolically labeled and chased in the absence and presence of inhibitors of exocytosis. The addition of carbonyl-cyanide-3-chlorophenylhydrazone, monensin, brefeldin A, or NaF-AlCl3 or incubation of cells at 20 degrees C all inhibited processing of the Hendra F protein, suggesting that cleavage of Hendra F occurs either in secretory vesicles budding from the trans-Golgi network or at the cell surface. In contrast to proteolytic cleavage of the simian virus 5 (SV5) F protein by the Ca(2+)-dependent protease furin, proteolytic cleavage of the Hendra F protein was not significantly inhibited by decreases in Ca2+ levels following incubation with EGTA or A23187. However, in the presence of weak amines and H+ V-ATPase inhibitors, known to raise intracellular pH, cleavage of Hendra F protein was inhibited while processing of the SV5 F protein was not significantly affected. The subcellular location, sensitivity to pH changes, and decreased Ca2+ requirement suggest that the protease responsible for cleavage of Hendra F protein differs from proteases previously shown to be involved in the processing of other viral glycoproteins.  相似文献   

8.
The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membrane protein PRR contains a large extracellular domain (∼310 amino acids), a single transmembrane domain (∼20 amino acids) and an intracellular domain (∼19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain (∼30 amino acids), the IC domain is also involved in assembly of V0 portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0 Å (maltose-free) and 2.15 Å (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP–PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR-IC domain in protein oligomerization.  相似文献   

9.
Proprotein convertases play an important role in tumorigenesis and invasiveness. Here, we report that a dibasic amino acid convertase, furin, directly cleaves proMMP-2 within the trans-Golgi network leading to an inactive form of matrix metalloproteinase-2 (MMP-2). Co-transfection of COS-1 cells with both proMMP-2 and furin cDNAs resulted in the cleavage of the N-terminal propeptide of proMMP-2. The molecular mass of cleaved MMP-2 (63 kDa), detected in both cell lysates and conditioned medium, is between the intermediate and fully activated forms of MMP-2 induced by membrane type 1-MMP. Furin-cleaved MMP-2 does not possess proteolytic activity as examined in a cell-free assay. Treatment of transfected cells with a furin inhibitor resulted in a dose-dependent inhibition of proMMP-2 cleavage; recombinant tissue inhibitor of metalloproteinase-2, which binds to the active site of membrane type 1-MMP, had no inhibitory effect. Site-directed mutagenesis of amino acids in the furin consensus recognition motif of proMMP-2(R69KPR72) prevented propeptide cleavage, thereby identifying the scissile bond and characterizing the basic amino acids required for cleavage. Other experimental observations were consistent with intracellular furin cleavage of proMMP-2 in the trans-Golgi network. The furin cleavage site in other proMMPs was examined. MMP-3, which contains the RXXR furin consensus sequence, was cleaved in furin co-transfected cells, whereas MMP-1, which lacks an RXXR consensus sequence, was not cleaved. In conclusion, we report the novel observation that furin can directly cleave the RXXR amino acid sequence in the propeptide domain of proMMP-2 leading to inactivation of the enzyme.  相似文献   

10.
Vacuolar H(+)-ATPases (V-ATPases) are a family of highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. How ATP is supplied for V-ATPase-mediated hydrolysis and for coupling of proton transport is poorly understood. We have reported that the glycolytic enzyme aldolase physically associates with V-ATPase. Here we show that aldolase interacts with three different subunits of V-ATPase (subunits a, B, and E). The binding sites for the V-ATPase subunits on aldolase appear to be on distinct interfaces of the glycolytic enzyme. Aldolase deletion mutant cells were able to grow in medium buffered at pH 5.5 but not at pH 7.5, displaying a growth phenotype similar to that observed in V-ATPase subunit deletion mutants. Abnormalities in V-ATPase assembly and protein expression observed in aldolase deletion mutant cells could be fully rescued by aldolase complementation. The interaction between aldolase and V-ATPase increased dramatically in the presence of glucose, suggesting that aldolase may act as a glucose sensor for V-ATPase regulation. Taken together, these findings provide functional evidence that the ATP-generating glycolytic pathway is directly coupled to the ATP-hydrolyzing proton pump through physical interaction between aldolase and V-ATPase.  相似文献   

11.
12.
Adamalysin 19 (a disintegrin and metalloproteinase 19, ADAM19, or meltrin beta) is a plasma membrane metalloproteinase. Human ADAM19 zymogen contains two potential furin recognition sites (RX(K/R)R), (196)KRPR(200)R and (199)RRMK(203)R, between its pro- and catalytic domains. Protein N-terminal sequencing revealed that the cellular mature forms of hADAM19 started at (204)EDLNSMK, demonstrating that the preferred furin cleavage site was the (200)RMK(203)R downward arrow(204)EDLN. Those mature forms were catalytically active. Both Pittsburgh mutant of alpha(1)-proteinase inhibitor and dec-Arg-Val-Lys-Arg-chloromethyl ketone, two specific furin inhibitors, blocked the activation of hADAM19. Activation of hADAM19 was also blocked by brefeldin A, which inhibits protein trafficking from the endoplasmic reticulum to the Golgi, or, a calcium ionophore known to inhibit the autoactivation of furin. When (202)KR were mutated to AA, the proenzyme was also activated, suggesting that (197)RPRR is an alternative activation site. Furthermore, only pro-forms of hADAM19 were detected in the (199)RR to AA mutant, which abolished both furin recognition sites. Moreover, the zymogens were not converted into their active forms in two furin-deficient mammalian cell lines; co-expression of hADAM19 and furin in these two cell lines restored zymogen activation. Finally, co-localization between furin and hADAM19 was identified in the endoplasmic reticulum-Golgi complex and/or the trans-Golgi network. This report is the first thorough investigation of the intracellular activation of adamalysin 19, demonstrating that furin activated pro-hADAM19 in the secretory pathway via one of the two consecutive furin recognition sites.  相似文献   

13.
In the epididymis and vas deferens, the vacuolar H(+)ATPase (V-ATPase), located in the apical pole of narrow and clear cells, is required to establish an acidic luminal pH. Low pH is important for the maturation of sperm and their storage in a quiescent state. The V-ATPase also participates in the acidification of intracellular organelles. The V-ATPase contains many subunits, and several of these subunits have multiple isoforms. So far, only subunits ATP6V1B1, ATP6V1B2, and ATP6V1E2, previously identified as B1, B2, and E subunits, have been described in the rat epididymis. Here, we report the localization of V-ATPase subunit isoforms ATP6V1A, ATP6V1C1, ATP6V1C2, ATP6V1G1, ATP6V1G3, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0D1, and ATP6V0D2, previously labeled A, C1, C2, G1, G3, a1, a2, a4, d1, and d2, in epithelial cells of the rat epididymis and vas deferens. Narrow and clear cells showed a strong apical staining for all subunits, except the ATP6V0A2 isoform. Subunits ATP6V0A2 and ATP6V1A were detected in intracellular structures closely associated but not identical to the TGN of principal cells and narrow/clear cells, and subunit ATP6V0D1 was strongly expressed in the apical membrane of principal cells in the apparent absence of other V-ATPase subunits. In conclusion, more than one isoform of subunits ATP6V1C, ATP6V1G, ATP6V0A, and ATP6V0D of the V-ATPase are present in the epididymal and vas deferens epithelium. Our results confirm that narrow and clear cells are well fit for active proton secretion. In addition, the diverse functions of the V-ATPase may be established through the utilization of specific subunit isoforms. In principal cells, the ATP6V0D1 isoform may have a physiological function that is distinct from its role in proton transport via the V-ATPase complex.  相似文献   

14.
The yeast Saccharomyces cerevisiae vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex responsible for acidifying intracellular organelles and is highly regulated. One of the regulatory subunits, subunit H, is encoded by the VMA13 gene in yeast and is composed of two domains, the N-terminal domain (amino acids (aa) 1-352) and the C-terminal domain (aa 353-478). The N-terminal domain is required for the activation of the complex, whereas the C-terminal domain is required for coupling ATP hydrolysis to proton translocation (Liu, M., Tarsio, M., Charsky, C. M., and Kane, P. M. (2005) J. Biol. Chem. 280, 36978-36985). Experiments with epitope-tagged copies of Vma13p revealed that there is only one copy of Vma13p/subunit H per V-ATPase complex. Analysis of the N-terminal domain shows that the first 179 amino acids are not required for the activation and full function of the V-ATPase complex and that the minimal region of Vma13p/subunit H capable of activating the V-ATPase is aa 180-353 of the N-terminal domain. Subunit H is expressed as two splice variants in mammals, and deletion of 18 amino acids in yeast Vma13p corresponding to the mammalian subunit H beta isoform results in reduced V-ATPase activity and significantly lower coupling of ATPase hydrolysis to proton translocation. Intriguingly, the yeast Vma13p mimicking the mammalian subunit H beta isoform is functionally equivalent to Vma13p lacking the entire C-terminal domain. These results suggest that the mammalian V-ATPase complexes with subunit H splice variant SFD-alpha or SFD-beta are likely to have different activities and may perform distinct cellular functions.  相似文献   

15.
The vacuolar H+-ATPase (V-ATPase) is a multimeric enzyme complex that acidifies organelles of the vacuolar system in eukaryotic cells. Proteins that interact with the V-ATPase may play an important role in controlling the intracellular localization and activity of the proton pump. The neuroendocrine-enriched V-ATPase accessory subunit Ac45 may represent such a protein as it has been shown to interact with the membrane sector of the V-ATPase in only a subset of organelles. Here, we examined the fate of newly synthesized Ac45 in the secretory pathway of a neuroendocrine cell. A major portion of intact approximately 46-kDa Ac45 was found to be N-linked glycosylated to approximately 62 kDa and a minor fraction to approximately 64 kDa. Trimming of the N-linked glycans gave rise to glycosylated Ac45-forms of approximately 61 and approximately 63 kDa that are cleaved to a C-terminal fragment of 42-44 kDa (the deglycosylated form is approximately 23 kDa), and a previously not detected approximately 22-kDa N-terminal cleavage fragment (the deglycosylated form is approximately 20 kDa). Degradation of the N-terminal fragment is rapid, does not occur in lysosomes and is inhibited by brefeldin A. Both the N- and C-terminal fragment pass the medial Golgi, as they become partially endoglycosidase H resistant. The Ac45 cleavage event is a relatively slow process (half-life of intact Ac45 is 4-6 h) and takes place in the early secretory pathway, as it is not affected by brefeldin A and monensin. Tunicamycin inhibited N-linked glycosylation of Ac45 and interfered with the cleavage process, suggesting that Ac45 needs proper folding for the cleavage to occur. Together, our results indicate that Ac45 folding and cleavage occur slowly and early in the secretory pathway, and that the cleavage event may be linked to V-ATPase activation.  相似文献   

16.
The TGF-beta family members are generated as latent pre-pro-polypeptides. The active mature peptides are cleaved from the latent forms by cellular proteases. TGF-beta 1, for instance, is predominantly processed by a substilisin-like proprotein convertase, furin. TGF-beta 2 has a consensus cleavage site for furin and therefore has been presumed to be cleaved by furin. However, TGF-beta 2 is often secreted as the latent form, which appears to be inconsistent with its postulated sensitivity to furin. We report here that both the regular (short) form of TGF-beta2 and its spliced variant with an additional exon (long form) are insensitive to furin. NIH 3T3 and CHO cells were transfected with expression vectors containing the short or long form of TGF-beta 2 or a chimeric TGF-beta consisting of the TGF-beta1 LAP region, the TGF-beta 2 cleavage site and the TGF-beta 2 mature peptide. The constructs included a c-myc epitope tag in the N-terminal region of the mature peptide. The TGF-betas produced by the transfected cells were analyzed with Western blots and immunocytochemistry. The intracellular proteins harvested from these cells were incubated with furin. Furin only inefficiently cleaved both the long and short forms of TGF-beta 2, but efficiently processed the chimeric TGF-beta. This indicates that the insensitivity of both forms of TGF-beta 2 to furin is a consequence of the tertiary structure of their LAP regions rather than their cleavage site. This differential processing of TGF-beta1 and -beta 2 may be part of the mechanism that generates isoform-specific functions of the TGF-betas.  相似文献   

17.
The fusion (F) protein precursor of virulent Newcastle disease virus (NDV) strains has two pairs of basic amino acids at the cleavage site, and its intracellular cleavage activation occurs in a variety of cells; therefore, the viruses cause systemic infections in poultry. To explore the protease responsible for the cleavage in the natural host, we examined detailed substrate specificity of the enzyme in chick embryo fibroblasts (CEF) using a panel of the F protein mutants at the cleavage site expressed by vaccinia virus vectors, and compared the specificity with those of mammalian subtilisin-like proteases such as furin, PC6 and PACE4 which are candidates for F protein processing enzymes. It was demonstrated in CEF cells that Arg residues at the -4, -2 and -1 positions upstream of the cleavage site were essential, and that at the -5 position was required for maximal cleavage. Phe at the +1 position was also important for efficient cleavage. On the other hand, furin and PC6 expressed by vaccinia virus vectors showed cleavage specificities against the F protein mutants consistent with that shown by the processing enzyme of CEF cells, but PACE4 hardly cleaved the F proteins including the wild type. These results indicate that the proteolytic processing enzymes of poultry for virulent NDV F proteins could be furin and/or PC6 but not PACE4. The significance of individual contribution of the three amino acids at the -5, -2 and +1 positions to cleavability was discussed in relation to the evolution of virulent and avirulent NDV strains.  相似文献   

18.
Noninvasive real-time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease's natural milieu. We developed a protease activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, on protease-mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV as well as in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high-throughput screening of 39,000-compound small molecule libraries, leading to identification of furin inhibitors. Furthermore, this strategy was used to identify inhibitors of another Golgi protease, the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE). BACE cleavage of the APP leads to formation of the Abeta peptide, a key event that leads to Alzheimer's disease. In conclusion, we describe a customizable noninvasive technology for real-time assessment of Golgi protease activity used to identify inhibitors of furin and BACE.  相似文献   

19.
The renin-angiotensin (RA) system is important for the regulation of blood pressure and electrolyte balance, and renin is the rate-limiting enzyme in this system. The recent discovery of (pro)renin receptor (PRR) has reinforced the functional role of the RA system. PRR non-proteolytically activates prorenin and its role has attracted the attention of researchers towards the RA system. However, there is insufficient information on the biochemical structure and biological functioning of PRR due to the difficulty of measuring PRR expression. In this work, human PRR (hPRR) with intact transmembrane and C-terminal domain (hPRR-wTM) and PRR without this domain (hPRR-w/oTM) were expressed in insect cells using baculovirus expression system (BES). Both hPRR-wTM and hPRR-w/oTM were fused with FLAG peptide by its N-terminus. Most of the hPRR-wTM was expressed in cell fraction and hPRR-w/oTM was secreted into the culture medium. hPRR-wTM was solubilized from the membrane fraction of recombinant baculovirus-infected cells by various detergents, suggesting that hPRR-wTM might be a transmembrane protein. hPRR-wTM was purified from the solubilized fraction using anti-FLAG M2 antibody agarose. Binding of purified hPRR-wTM to renin immobilized onto sensor chips was directly proportional to the hPRR-wTM concentration. Approximately 225 μg of functional hPRR-wTM was purified from 80 ml of baculovirus-infected cell culture. Scale-up of this system will lead to mass production and crystallization of hPRR-wTM and determination of its biochemical structure and biological function.  相似文献   

20.
The vacuolar (H+)-ATPases (V-ATPases) are ATP-dependent proton pumps that operate by a rotary mechanism in which ATP hydrolysis drives rotation of a ring of proteolipid subunits relative to subunit a within the integral V(0) domain. In vivo dissociation of the V-ATPase (an important regulatory mechanism) generates a V(0) domain that does not passively conduct protons. EM analysis indicates that the N-terminal domain of subunit a approaches the rotary subunits in free V(0), suggesting a possible mechanism of silencing passive proton transport. To test the hypothesis that the N-terminal domain inhibits passive proton flux by preventing rotation of the proteolipid ring in free V(0), factor Xa cleavage sites were introduced between the N- and C-terminal domains of subunit a (the Vph1p isoform in yeast) to allow its removal in vitro after isolation of vacuolar membranes. The mutant Vph1p gave rise to a partially uncoupled V-ATPase complex. Cleavage with factor Xa led to further loss of coupling of proton transport and ATP hydrolysis. Removal of the N-terminal domain by cleavage with factor Xa and treatment with KNO3 and MgATP did not, however, lead to an increase in passive proton conductance by free V(0), suggesting that removal of the N-terminal domain is not sufficient to facilitate passive proton conductance through V(0). Photoactivated cross-linking using the cysteine reagent maleimido benzophenone and single cysteine mutants of subunit a demonstrated the proximity of specific sites within the N-terminal domain and subunits E and G of the peripheral stalk. These results suggest that a localized region of the N-terminal domain (residues 347-369) is important in anchoring the peripheral stator in V1V0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号