首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Bats are unique among mammals in their use of powered flight and their widespread capacity for laryngeal echolocation. Understanding how and when these and other abilities evolved could be improved by examining the bat fossil record. However, the fossil record of bats is commonly believed to be very poor. Quantitative analyses of this record have rarely been attempted, so it has been difficult to gauge just how depauperate the bat fossil record really is. A crucial step in analyzing the quality of the fossil record is to be able to accurately estimate completeness. Measures of completeness of the fossil record have important consequences for our understanding of evolutionary rates and patterns among bats. In this study, we applied previously developed statistical methods of analyzing completeness to the bat fossil record. The main utility of these methods over others used to study completeness is their independence from phylogeny. This phylogenetic-independence is desirable, given the recent state of flux in the higher-level phylogenetic relationships of bats. All known fossil bat genera were tabulated at the geologic stage or sub-epoch level. This binning strategy allowed an estimate of the extinction rate for each bat genus per bin. Extinction rate—together with per-genus estimates of preservation probability and original temporal distributions—was used to calculate completeness. At the genus level, the bat fossil record is estimated to be 12% complete. Within the order, Pteropodidae is missing most of its fossil history, while Rhinolophoidea and Vespertilionoidea are missing the least. These results suggest that 88% of bats that existed never left a fossil record, and that the fossil record of bats is indeed poor. Much of the taxonomic and evolutionary history of bats has yet to be uncovered.  相似文献   

4.
The Asteridae is a group of some 80,000 species of flowering plants characterized by their fused corollas and iridoid compounds. Recent phylogenetic analyses have helped delimit the group and have identified four main clades within it; Cornales, Ericales, Lamiids and Campanulids, with the last two collectively known as the Euasteridae. A search for the oldest fossils representing asterids yielded a total of 261 records. Each of these fossils was evaluated as to the reliability of its identification. The oldest accepted fossils for each clade were used to estimate minimum ages for the whole of the Asteridae. The results suggest that the Asteridae dates back to at least the Turonian, Late Cretaceous (89.3 mya) and that by the Late Santonian-Early Campanian (83.5 mya) its four main clades were already represented in the fossil record.  相似文献   

5.
3rd ed. By Clark Spencer Larsen, Robert H. Matter, and Daniel L. Gebo. Prospect Heights, IL: Waveland Press. 1998. 225 pp. ISBN 1-57766-002-1. $18.95 (paper).  相似文献   

6.
The oldest known feathers from the Late Jurassic are alreadymodern in form and microscopic detail. Because these oldestexamples are assignable to an extinct branch (Sauriurae) ofthe basal avian dichotomy, their features must have been establishedat a significantly earlier date. The skin of a wide varietyof dinosaurs is now known and is unlikely to represent a predecessorto a feather bearing integument. Examples of feathered dinosaursresult from erroneous identification of internal structuresas part of the skin covering, and from the confusion of flightlessbirds from the Early Cretaceous of China with dinosaurs.  相似文献   

7.
The fossil record of vertebrate tracks in Mexico is taxonomically rich and geographically diverse, and ranges in age from Middle Jurassic to Pleistocene and possibly Holocene. Middle Jurassic saurischian dinosaur tracks from Oaxaca represent the oldest record of vertebrate tracks in Mexico. Tracks attributed to Late Jurassic theropods and ornithopods are known from Michoacán. Theropod tracks of supposed Jurassic age are known from Durango. Lower Cretaceous Saurischian and ornithopod tracks are known from southern Puebla. Central Mexico has yielded Late Cretaceous hadrosaurid and sauropod tracks (Puebla), and tracks belonging to Theropoda and Ornithopoda (El Aguaje, Michoacan). In Coahuila several tracksites occur within the Cerro del Pueblo Formation and include tracks of mesoreptiles, pterosaurs, small to large theropods, bipedal and quadrupedal ornithopods, birds and possibly a mammal. A tracksite in the Olmos Formation includes tracks of turtles, crocodilians, medium-sized theropods, small ornithopods, and birds. Bird tracks of supposed Eocene age are known from Sinaloa. Two important Pleistocene ichnofaunas occur in the states of Puebla (Tepexi de Rodríguez) and Jalisco (San Juan de los Lagos), and include tracks of camelids, artiodactyls, small ungulates, elephants, large felids and birds. Pleistocene human tracks occur in Coahuila and Jalisco. Mexico's track record provides important insights into vertebrate diversity, paleoecology, and paleoenvironments. Given the rate of new discoveries since 1998, there is no doubt that new sites await to be found.  相似文献   

8.
Entomological Review - The paper overviews the fossil record of insects with long mouthparts and rostra adapted to feeding on floral nectar and pollination drops of extinct gymnosperms. The...  相似文献   

9.
In the past few decades, many new discoveries have provided numerous transitional fossils that show the evolution of hoofed mammals from their primitive ancestors. We can now document the origin of the odd-toed perissodactyls, their early evolution when horses, brontotheres, rhinoceroses, and tapirs can barely be distinguished, and the subsequent evolution and radiation of these groups into distinctive lineages with many different species and interesting evolutionary transformations through time. Similarly, we can document the evolution of the even-toed artiodactyls from their earliest roots and their great radiation into pigs, peccaries, hippos, camels, and ruminants. We can trace the complex family histories in the camels and giraffes, whose earliest ancestors did not have humps or long necks and looked nothing like the modern descendants. Even the Proboscidea and Sirenia show many transitional fossils linking them to ancient ancestors that look nothing like modern elephants or manatees. All these facts show that creationist attacks on the fossil record of horses and other hoofed mammals are completely erroneous and deceptive. Their critiques of the evidence of hoofed mammal evolution are based entirely on reading trade books and quoting them out of context, not on any firsthand knowledge or training in paleontology or looking at the actual fossils.  相似文献   

10.
The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site''s skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones.  相似文献   

11.
The predatory boring habit common to many recent snails probablyarose first in the Polinicinae (Naticacea) during Upper Cretaceous(Cenomanian) times (100 million years B.P.) . In the fossilrecord the frequency of bored shells increasesgreatly in rocksof latest Cretaceous age and becomes more widespread duringearly Tertiary times coincident with the major diversificationof the primary groups of boring snails. The borings in these Cretaceous and Tertiary shells show thesame characteristics of preference of penetration in one pelecypodvalve rather than the other or in position of the boring siteon the shell that are found in recent shell assemblages. Borings in Paleozoic brachiopod shells (230–550 millionyears old) that have previously been attributed to gastropodpredation are herein attributed to other but unknown boringorganisms. In part these borings are not accepted as evidence of Paleozoicgastropod predation because it necessitates: (1) Postulationof the separate development of a boring habit ith its concomitantdevelopment of an accessory boring organ in a groupwhose descendantsare all herbivores, and (2) The development of such a habithundreds of millions of years before the appearance of any relativesof present day borers.  相似文献   

12.
13.
14.
Fossil wood of the Winteraceae from the Upper Cretaceous sedimentsof James Ross Island, Antarctic Peninsula, is described herefor the first time. The specimen is characterized by the absenceof vessels, rays of two distinct sizes and tracheids with one–threerows of circular bordered pits, mainly on the radial walls,grading to horizontally elongate and scalariform. Despite anatomicalconformity to the family Winteraceae, the fossil wood is notidentical to any one extant genus and therefore has been assignedto the fossil organ genus Winteroxylon Gottwald with which thefossil shows greatest similarity. Copyright 2000 Annals of BotanyCompany Antarctica, Cretaceous, angiosperm, wood, anatomy, Winteraceae, Winteroxylon, fossil, palaeoclimate  相似文献   

15.
16.
A numerical cladistic analysis of the conodont family Palmatolepidae has been undertaken to determine the applicability of the technique to group-wide systematic revision. Results suggest a new hypothesis of relationships that is considerably more parsimonious than trees compatible with existing hypotheses of relationships, or trees that are even loosely constrained stratigraphically. This may occur either because the fossil record is incomplete, because taxon sampling for the cladistic analysis is low, or because the most parsimonious trees approximate the true tree less well than do stratigraphically-constrained trees (or because of a combination of these factors). Although more taxa and more characters would be preferable in choosing between these possibilities, the tree derived solely from morphological data is adopted. Thus, stratigraphic data can be used to test hypotheses of relationships and construct phylogenies; hypotheses of relationships can be used to test the completeness of the conodont fossil record. Existing schemes of classification within the Palmatolepidae are rejected because most groups within them are either polyphyletic or paraphyletic. A new scheme is presented. Character changes suggest correlated, progressive and mosaic evolution within the Palmatolepidae. Parsimony analysis of partitioned datasets indicates that more phylogenetic information can be recovered from S rather than P or M element positions, although data from all three positional groups are preferable to data from just one. Thus, multielement taxonomy is essential to the resolution of conodont interrelationships.  相似文献   

17.
The diversity of heterotrophic flagellates is generally based on cultivated strains, on which ultrastructural, physiological, and molecular studies have been performed. However, the relevance of these cultured strains as models of the dominant heterotrophic flagellates in the marine planktonic environment is unclear. In fact, molecular surveys typically recover novel eukaryotic lineages that have refused cultivation so far. This study was designed to directly address the culturing bias in planktonic marine heterotrophic flagellates. Several microcosms were established adding increasing amounts and sources of organic matter to a confined natural microbial community pre-filtered by 3 μm. Growth dynamics were followed by epifluorescence microscopy and showed the expected higher yield of bacteria and heterotrophic flagellates at increased organic matter additions. Moreover, protist diversity analyzed by molecular tools showed a clear substitution in the community, which differed more and more from the initial sample as the organic matter increased. Within this gradient, there was also an increase of sequences related to cultured organisms as well as a decrease in diversity. Culturing bias is partly explained by the use of organic matter in the isolation process, which drives a shift in the community to conditions closer to laboratory cultures. An intensive culturing effort using alternative isolation methods is necessary to allow the access to the missing heterotrophic flagellates that constitute the abundant and active taxa in marine systems.  相似文献   

18.
Marine spatial planning (MSP) has been gaining in stature recently as an ecosystem-based tool for the management of marine space that promotes the sustainable and optimal use of resources with minimal stakeholder conflicts. Malta is the quintessential maritime nation, with a disproportionately large marine area compared to its terrestrial area. Nonetheless, its limited coastline, a considerable portion of which is inaccessible, poses inevitable conflicts between multiple marine activities and designations, including aquaculture, fishing, bunkering, coastal tourism, navigation, renewable energy installations, conservation of biological diversity and protected areas (on ecological criteria). This article makes the case to implement MSP-based policies and an applicable legal framework in the Maltese Islands.  相似文献   

19.
The best reconstructions of the history of life will use both molecular time estimates and fossil data. Errors in molecular rate estimation typically are unaccounted for and no attempts have been made to quantify this uncertainty comprehensively. Here, focus is primarily on fossil calibration error because this error is least well understood and nearly universally disregarded. Our quantification of errors in the synapsid–diapsid calibration illustrates that although some error can derive from geological dating of sedimentary rocks, the absence of good stem fossils makes phylogenetic error the most critical. We therefore propose the use of calibration ages that are based on the first undisputed synapsid and diapsid. This approach yields minimum age estimates and standard errors of 306.1±8.5 MYR for the divergence leading to birds and mammals. Because this upper bound overlaps with the recent use of 310 MYR, we do not support the notion that several metazoan divergence times are significantly overestimated because of serious miscalibration (sensu Lee 1999). However, the propagation of relevant errors reduces the statistical significance of the pre-K–T boundary diversification of many bird lineages despite retaining similar point time estimates. Our results demand renewed investigation into suitable loci and fossil calibrations for constructing evolutionary timescales.[Reviewing Editor: Martin Kreitman]  相似文献   

20.

Background

We describe the first occurrence in the fossil record of an aquatic avian twig-nest with five eggs in situ (Early Miocene Tudela Formation, Ebro Basin, Spain). Extensive outcrops of this formation reveal autochthonous avian osteological and oological fossils that represent a single taxon identified as a basal phoenicopterid. Although the eggshell structure is definitively phoenicopterid, the characteristics of both the nest and the eggs are similar to those of modern grebes. These observations allow us to address the origin of the disparities between the sister taxa Podicipedidae and Phoenicopteridae crown clades, and traces the evolution of the nesting and reproductive environments for phoenicopteriforms.

Methodology/Principal Findings

Multi-disciplinary analyses performed on fossilized vegetation and eggshells from the eggs in the nest and its embedding sediments indicate that this new phoenicopterid thrived under a semi-arid climate in an oligohaline (seasonally mesohaline) shallow endorheic lacustine environment. High-end microcharacterizations including SEM, TEM, and EBSD techniques were pivotal to identifying these phoenicopterid eggshells. Anatomical comparisons of the fossil bones with those of Phoenicopteriformes and Podicipediformes crown clades and extinct palaelodids confirm that this avian fossil assemblage belongs to a new and basal phoenicopterid.

Conclusions/Significance

Although the Podicipediformes-Phoenicopteriformes sister group relationship is now well supported, flamingos and grebes exhibit feeding, reproductive, and nesting strategies that diverge significantly. Our multi-disciplinary study is the first to reveal that the phoenicopteriform reproductive behaviour, nesting ecology and nest characteristics derived from grebe-like type strategies to reach the extremely specialized conditions observed in modern flamingo crown groups. Furthermore, our study enables us to map ecological and reproductive characters on the Phoenicopteriformes evolutionary lineage. Our results demonstrate that the nesting paleoenvironments of flamingos were closely linked to the unique ecology of this locality, which is a direct result of special climatic (high evaporitic regime) and geological (fault system) conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号