首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.

Rationale

Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies.

Objectives

The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats.

Materials and Methods

Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test.

Results

Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age.

Conclusion

The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.  相似文献   

3.
Huntington's disease (HD) is a genetic neurodegenerative disorder, caused by an expanded CAG repeat in the gene encoding the huntingtin protein. At the premanifest phase, before motor symptoms occur, psychiatric and emotional disorders are observed with high prevalence in HD patients. Agitation, anxiety and irritability are often described but also depression and/or apathy, associated with a lack of emotional control. The aim of the present study was to better circumscribe and understand the emotional symptoms and assess their evolution according to the progression of the disease using a transgenic HD model, BACHD rats, at the age of 4, 12 and 18 months. To achieve this goal, we confronted animals to two types of tests: first, tests assessing anxiety like the light/dark box and the conflict test, which are situations that did not involve an obvious threat and tests assessing the reactivity to a present threat using confrontation with an unknown conspecific (social behavior test) or with an aversive stimulus (fear conditioning test). In all animals, results show an age‐dependent anxiety‐like behavior, particularly marked in situation requiring passive responses (light/dark box and fear conditioning tests). BACHD rats exhibited a more profound alteration than WT animals in these tests from an early stage of the disease whereas, in tasks requiring some kind of motivation (for food or for social contacts), only old BACHD rats showed high anxiety‐like behavior compared to WT, may be partly due to the other symptoms' occurrence at this stage: locomotor difficulties and/or apathy.  相似文献   

4.
Metabolic and psychiatric disturbances occur early on in the clinical manifestation of Huntington’s disease (HD), a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. Hypothalamus has emerged as an important site of pathology and alterations in this area and its neuroendocrine circuits may play a role in causing early non-motor symptoms and signs in HD. Leptin is a hormone that controls energy homeostasis by signaling through leptin receptors in the hypothalamus. Disturbed leptin action is implicated in both obesity and depression and altered circulating levels of leptin have been reported in both clinical HD and rodent models of the disease. Pathological leptin signaling may therefore be involved in causing the metabolic and psychiatric disturbances of HD. Here we tested the hypothesis that expression of mutant HTT in leptin receptor carrying neurons plays a role in the development of the non-motor phenotype in the BACHD mouse model. Our results show that inactivation of mutant HTT in leptin receptor-expressing neurons in the BACHD mouse using cross-breeding based on a cre-loxP system did not have an effect on the metabolic phenotype or anxiety-like behavior. The data suggest that mutant HTT disrupts critical hypothalamic pathways by other mechanisms than interfering with intracellular leptin signaling.  相似文献   

5.
Maren S 《Neuron》2005,47(6):783-786
Do associative learning and synaptic long-term potentiation (LTP) depend on the same cellular mechanisms? Recent work in the amygdala reveals that LTP and Pavlovian fear conditioning induce similar changes in postsynaptic AMPA-type glutamate receptors and that occluding these changes by viral-mediated overexpression of a dominant-negative GluR1 construct attenuates both LTP and fear memory in rats. Novel forms of presynaptic plasticity in the lateral nucleus may also contribute to fear memory formation, bolstering the connection between synaptic plasticity mechanisms and associative learning and memory.  相似文献   

6.
APPswe+PS1/ΔE9 transgenic (Tg) mice with Aβ plaque formation in neocortex and hippocampus were evaluated in tests measuring exploratory activity, anxiety, and memory ability using open field test (OFT), Y-maze, contextual fear conditioning (CFC), and Morris water maze (MWM). Wild type (WT) and Tg mice over eight months old showed same locomotion activity and anxiety level in novel stimulation, open field, and Y-maze contexts. In other experiments that measured associative memory and spatial memory in Tg mice and their littermates, the subjects also presented similar deficiencies in memory acquisition. These two aged groups showed abnormal freezing level variance especially in CFC test. In comparison to that in non-transgenic 8-week-old mice group, the acquisition of spatial memory in MWM task was impaired in aged WT and bigenic Tg mice. Taken together, aged wild-type littermates and Tg mice present similar deficits in associative learning and spatial memory independent of amyloid plaques.  相似文献   

7.
Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats'' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models.  相似文献   

8.
Sweatt JD 《Neuron》2001,31(5):671-674
Studies of the signal transduction mechanisms underlying learning and memory have provided many new insights into the molecular mechanisms underlying associative conditioning in mammals. In this issue of Neuron, Gean and colleagues report the discovery that the PI-3 kinase/AKT(PKB) pathway contributes to LTP and the consolidation of amygdala-dependent cued fear conditioning in rats.  相似文献   

9.
Johansen JP  Cain CK  Ostroff LE  LeDoux JE 《Cell》2011,147(3):509-524
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.  相似文献   

10.
Mapping and decoding brain activity patterns underlying learning and memory represents both great interest and immense challenge. At present, very little is known regarding many of the very basic questions regarding the neural codes of memory: are fear memories retrieved during the freezing state or non-freezing state of the animals? How do individual memory traces give arise to a holistic, real-time associative memory engram? How are memory codes regulated by synaptic plasticity? Here, by applying high-density electrode arrays and dimensionality-reduction decoding algorithms, we investigate hippocampal CA1 activity patterns of trace fear conditioning memory code in inducible NMDA receptor knockout mice and their control littermates. Our analyses showed that the conditioned tone (CS) and unconditioned foot-shock (US) can evoke hippocampal ensemble responses in control and mutant mice. Yet, temporal formats and contents of CA1 fear memory engrams differ significantly between the genotypes. The mutant mice with disabled NMDA receptor plasticity failed to generate CS-to-US or US-to-CS associative memory traces. Moreover, the mutant CA1 region lacked memory traces for “what at when” information that predicts the timing relationship between the conditioned tone and the foot shock. The degraded associative fear memory engram is further manifested in its lack of intertwined and alternating temporal association between CS and US memory traces that are characteristic to the holistic memory recall in the wild-type animals. Therefore, our study has decoded real-time memory contents, timing relationship between CS and US, and temporal organizing patterns of fear memory engrams and demonstrated how hippocampal memory codes are regulated by NMDA receptor synaptic plasticity.  相似文献   

11.
Jin XC  Ma CL  Li BM 《生理学报》2007,59(6):739-744
伐α2A肾上腺素受体选择性激动剂guanfacine对空间工作记忆和选择性注意等前额叶皮层认知功能有重要的、有益的影响。然而,激活α2A受体对于依赖杏仁体和海马回路的恐惧记忆条件反射是否有影响,目前尚不清楚。本研究结果显示,全身给guanfacine显著提高大鼠在Lashley迷宫中的空间学习能力:guanfacine大鼠达到学会标准所需要的训练次数和所犯错误的次数显著少于生理盐水对照组大鼠。然而,guanfacine组大鼠场景和声音恐惧记忆的获得/巩固与对照组大鼠相比没有显著差异。结果提示,刺激α2A受体产生的有益效应是任务依赖的:guanfacine改善空间学习能力,但不影响恐惧记忆的获得/巩固。  相似文献   

12.
Aging‐related emotional memory deficit is a well‐known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long‐term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging‐related emotional memory deficit.  相似文献   

13.
The function of adult neurogenesis in the rodent brain remains unclear. Ablation of adult born neurons has yielded conflicting results about emotional and cognitive impairments. One hypothesis is that adult neurogenesis in the hippocampus enables spatial pattern separation, allowing animals to distinguish between similar stimuli. We investigated whether spatial pattern separation and other putative hippocampal functions of adult neurogenesis were altered in a novel genetic model of neurogenesis ablation in the rat. In rats engineered to express thymidine kinase (TK) from a promoter of the rat glial fibrillary acidic protein (GFAP), ganciclovir treatment reduced new neurons by 98%. GFAP-TK rats showed no significant difference from controls in spatial pattern separation on the radial maze, spatial learning in the water maze, contextual or cued fear conditioning. Meta-analysis of all published studies found no significant effects for ablation of adult neurogenesis on spatial memory, cue conditioning or ethological measures of anxiety. An effect on contextual freezing was significant at a threshold of 5% (P = 0.04), but not at a threshold corrected for multiple testing. The meta-analysis revealed remarkably high levels of heterogeneity among studies of hippocampal function. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis.  相似文献   

14.
Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory reconsolidation – a state in which recalled memories become susceptible to modification – we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.  相似文献   

15.
While Huntington’s disease (HD) is classified as a neurological disorder, HD patients exhibit a high incidence of cardiovascular events leading to heart failure and death. In this study, we sought to better understand the cardiovascular phenotype of HD using the BACHD mouse model. The age-related decline in cardiovascular function was assessed by echocardiograms, electrocardiograms, histological and microarray analysis. We found that structural and functional differences between WT and BACHD hearts start at 3 months of age and continue throughout life. The aged BACHD mice develop cardiac fibrosis and ultimately apoptosis. The BACHD mice exhibited adaptive physiological changes to chronic isoproterenol treatment; however, the medication exacerbated fibrotic lesions in the heart. Gene expression analysis indicated a strong tilt toward apoptosis in the young mutant heart as well as changes in genes involved in cellular metabolism and proliferation. With age, the number of genes with altered expression increased with the large changes occurring in the cardiovascular disease, cellular metabolism, and cellular transport clusters. The BACHD model of HD exhibits a number of changes in cardiovascular function that start early in the disease progress and may provide an explanation for the higher cardiovascular risk in HD.  相似文献   

16.
The dorsolateral column of the periaqueductal gray (dlPAG) integrates aversive emotional experiences and represents an important site responding to life threatening situations, such as hypoxia, cardiac pain and predator threats. Previous studies have shown that the dorsal PAG also supports fear learning; and we have currently explored how the dlPAG influences associative learning. We have first shown that N-methyl-D-aspartate (NMDA) 100 pmol injection in the dlPAG works as a valuable unconditioned stimulus (US) for the acquisition of olfactory fear conditioning (OFC) using amyl acetate odor as conditioned stimulus (CS). Next, we revisited the ascending projections of the dlPAG to the thalamus and hypothalamus to reveal potential paths that could mediate associative learning during OFC. Accordingly, the most important ascending target of the dlPAG is the hypothalamic defensive circuit, and we were able to show that pharmacological inactivation using β-adrenoceptor blockade of the dorsal premammillary nucleus, the main exit way for the hypothalamic defensive circuit to thalamo-cortical circuits involved in fear learning, impaired the acquisition of the OFC promoted by NMDA stimulation of the dlPAG. Moreover, our tracing study revealed multiple parallel paths from the dlPAG to several thalamic targets linked to cortical-hippocampal-amygdalar circuits involved in fear learning. Overall, the results point to a major role of the dlPAG in the mediation of aversive associative learning via ascending projections to the medial hypothalamic defensive circuit, and perhaps, to other thalamic targets, as well. These results provide interesting perspectives to understand how life threatening events impact on fear learning, and should be useful to understand pathological fear memory encoding in anxiety disorders.  相似文献   

17.
P311 is an 8-kDa protein that is expressed in many brain regions, particularly the hippocampus, cerebellum and olfactory lobes, and is under stringent regulation by developmental, mitogenic and other physiological stimuli. P311 is thought to be involved in the transformation and motility of neural cells; however, its role in normal brain physiology is undefined. To address this point, P311-deficient mice were developed through gene targeting and their behaviors were characterized. Mutants displayed no overt abnormalities, bred normally and had normal survival rates. Additionally, no deficiencies were noted in motor co-ordination, balance, hearing or olfactory discrimination. Nevertheless, P311-deficient mice showed altered behavioral responses in learning and memory. These included impaired responses in social transmission of food preference, Morris water maze and contextual fear conditioning. Additionally, mutants displayed altered emotional responses as indicated by decreased freezing in contextual and cued fear conditioning and reduced fear-potentiated startle. Together, these data establish P311 as playing an important role in learning and memory processes and emotional responses.  相似文献   

18.
A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images – images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical ‘fear module’. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials). We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant.  相似文献   

19.
The cascade of events that lead to cognitive decline, motor deficits, and psychiatric symptoms in patients with Huntington disease (HD) is triggered by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein. A significant mechanism in HD is the generation of mutant HTT fragments, which are generally more toxic than the full-length HTT. The protein fragments observed in human HD tissue and mouse models of HD are formed by proteolysis or aberrant splicing of HTT. To systematically investigate the relative contribution of the various HTT protein proteolysis events observed in vivo, we generated transgenic mouse models of HD representing five distinct proteolysis fragments ending at amino acids 171, 463, 536, 552, and 586 with a polyglutamine length of 148. All lines contain a single integration at the ROSA26 locus, with expression of the fragments driven by the chicken β-actin promoter at nearly identical levels. The transgenic mice N171-Q148 and N552-Q148 display significantly accelerated phenotypes and a shortened life span when compared with N463-Q148, N536-Q148, and N586-Q148 transgenic mice. We hypothesized that the accelerated phenotype was due to altered HTT protein interactions/complexes that accumulate with age. We found evidence for altered HTT complexes in caspase-2 fragment transgenic mice (N552-Q148) and a stronger interaction with the endogenous HTT protein. These findings correlate with an altered HTT molecular complex and distinct proteins in the HTT interactome set identified by mass spectrometry. In particular, we identified HSP90AA1 (HSP86) as a potential modulator of the distinct neurotoxicity of the caspase-2 fragment mice (N552-Q148) when compared with the caspase-6 transgenic mice (N586-Q148).  相似文献   

20.
Phosphodiesterases (PDEs) are a superfamily of intracellular second messenger cyclic nucleotide hydrolyzing enzymes composed of 12 families. The Pde4 family has been implicated in depression and cognition, and PDE4 inhibitors have been evaluated as antidepressants and possible cognitive enhancers. Pde4d(-/-) mice show an antidepressant phenotype and learning enhancement on some tests, but not others as do mice treated with PDE4 inhibitors. Here, we report for the first time the behavioral phenotype of a new Pde4d knock-down (KD) rat model of PDE4D deficiency. Consistent with other data on PDE4D deficiency, Pde4d KD rats showed depression resistance in the Porsolt forced swim test and hyperreactivity of the acoustic startle response with no differential response on prepulse inhibition, suggesting no sensorimotor gating defect. Pde4d KD rats also exhibited a small exploratory activity reduction but no difference following habituation, and no enhanced spatial learning or reference memory in the Morris water maze. A selective improvement in route-based learning in the Cincinnati water maze was seen as well as enhanced contextual and cued fear conditioning and a more rapid rate of cued extinction from their higher freezing level that declined to wild-type (WT) levels only after ~20 extinction trials. The rat model confirms Pde4d's role in depression but not in spatial learning or memory enhancement and shows for the first time higher fear conditioning and altered extinction compared with controls. The new model provides a tool by which to better understand the role of PDE4D in neuropsychiatric disorders and for the development of alternate treatment approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号