首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiang CY  Liu SJ  Tsai JP  Li YS  Chen MY  Liu HH  Chong P  Leng CH  Chen HW 《PloS one》2011,6(8):e23319
To protect against dengue viral infection, a novel lipidated dengue subunit vaccine was rationally designed to contain the consensus amino acid sequences derived from four serotypes of dengue viruses. We found that the lipidated consensus dengue virus envelope protein domain III (LcED III) is capable of activating antigen-presenting cells and enhancing cellular and humoral immune responses. A single-dose of LcED III immunization in mice without extra adjuvant formulation is sufficient to elicit neutralizing antibodies against all four serotypes of dengue viruses. In addition, strong memory responses were elicited in mice immunized with a single-dose of LcED III. Quick, anamnestic neutralizing antibody responses to a live dengue virus challenge were elicited at week 28 post-immunization. These results demonstrate the promising possibility of a future successful tetravalent vaccine against dengue viral infections that utilizes one-dose vaccination with LcED III.  相似文献   

2.
Labeaud D 《Future virology》2010,5(6):675-678
Rift Valley fever virus (RVFV) is an important animal and human threat and leads to longstanding morbidity and mortality in susceptible hosts. Since no therapies currently exist to treat Rift Valley fever, it remains a public and animal health priority to develop safe, effective RVFV vaccines (whether for animals, humans, or both) that provide long-term protective immunity. In the evaluated article, Bhardwaj and colleagues describe the creation and testing of two successful vaccine strategies against RVFV, a DNA plasmid vaccine expressing Gn coupled to C3d, and an alpha-virus replicon vaccine expressing Gn protein. Both vaccines elicited strong neutralizing antibody responses, prevented morbidity and mortality in RVFV-challenged mice, and enabled protection of naive mice via passive antibody transfer from vaccinated mice. Both DNA and replicon RVFV vaccines have previously been shown to protect against RVFV challenge, but these results allow for direct comparison of the two methods and evaluation of a combined prime-boost method. The results also highlight the specific humoral and cell-mediated immune responses to vaccination.  相似文献   

3.
Viruses that infect eukaryotic organisms have the unique characteristic of self-assembling into particles. The mammalian immune system is highly attuned to recognizing and attacking these viral particles following infection. The use of particle-based immunogens, often delivered as live-attenuated viruses, has been an effective vaccination strategy for a variety of viruses. The development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge, since HIV infects cells of the immune system causing severe immunodeficiency resulting in the syndrome known as AIDS. In addition, the ability of the virus to adapt to immune pressure and reside in an integrated form in host cells presents hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes against different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immune responses. However, while these vaccines stimulate immunity, challenged animals rarely clear the viral infection and the degree of attenuation directly correlates with protection from disease. Further, a live-attenuated vaccine has the potential to revert to a pathogenic form. Alternatively, virus-like particles (VLPs) mimic the viral particle without causing an immunodeficiency disease. VLPs are self-assembling, non-replicating, non-pathogenic particles that are similar in size and conformation to intact virions. A variety of VLPs for lentiviruses are currently in preclinical and clinical trials. This review focuses on our current status of VLP-based AIDS vaccines, regarding issues of purification and immune design for animal and clinical trials.  相似文献   

4.
Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.  相似文献   

5.
Vaccine vectors derived from Venezuelan equine encephalitis virus (VEE) that expressed simian immunodeficiency virus (SIV) immunogens were tested in rhesus macaques as part of the effort to design a safe and effective vaccine for human immunodeficiency virus. Immunization with VEE replicon particles induced both humoral and cellular immune responses. Four of four vaccinated animals were protected against disease for at least 16 months following intravenous challenge with a pathogenic SIV swarm, while two of four controls required euthanasia at 10 and 11 weeks. Vaccination reduced the mean peak viral load 100-fold. The plasma viral load was reduced to below the limit of detection (1,500 genome copies/ml) in one vaccinated animal between 6 and 16 weeks postchallenge and in another from week 6 through the last sampling time (40 weeks postchallenge). The extent of reduction in challenge virus replication was directly correlated with the strength of the immune response induced by the vectors, which suggests that vaccination was effective.  相似文献   

6.
A new vaccination principle against flaviviruses, based on a tick-borne encephalitis virus (TBEV) self-replicating noninfectious RNA vaccine that produces subviral particles, has recently been introduced (R. M. Kofler, J. H. Aberle, S. W. Aberle, S. L. Allison, F. X. Heinz, and C. W. Mandl, Proc. Natl. Acad. Sci. USA 7:1951-1956, 2004). In this study, we evaluated the potential of the self-replicating RNA vaccine in mice in comparison to those of live, attenuated vaccines and a formalin-inactivated whole-virus vaccine (ImmunInject). For this purpose, mice were immunized using gene gun-mediated application of the RNA vaccine and tested for CD8+ T-cell responses, long-term duration, neutralizing capacity, and isotype profile of specific antibodies and protection against lethal virus challenge. We demonstrate that the self-replicating RNA vaccine induced a broad-based, humoral and cellular (Th1 and CD8+ T-cell response) immune response comparable to that induced by live vaccines and that it protected mice from challenge. Even a single immunization with 1 microg of the replicon induced a long-lasting antibody response, characterized by high neutralizing antibody titers, which were sustained for at least 1 year. Nevertheless, it was possible to boost this response further by a second injection with the RNA vaccine, even in the presence of a concomitant CD8+ T-cell response. In this way it was possible to induce a balanced humoral and cellular immune response, similar to infection-induced immunity but without the safety hazards of infectious agents. The results also demonstrate the value of TBEV replicon RNA for inducing protective long-lasting antiviral responses.  相似文献   

7.
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines.  相似文献   

8.
Producing a prophylactic vaccine for human immunodeficiency virus (HIV) has proven to be a challenge. Most biological isolates of HIV are difficult to neutralize, so that conventional subunit-based antibody-inducing vaccines are unlikely to be very effective. In the rhesus macaque model, some protection was afforded by DNA/recombinant viral vector vaccines. However, these studies used as the challenge virus SHIV-89.6P, which is neutralizable, making it difficult to determine whether the observed protection was due to cellular immunity, humoral immunity, or a combination of both. In this study, we used a DNA prime/modified vaccinia virus Ankara boost regimen to immunize rhesus macaques against nearly all simian immunodeficiency virus (SIV) proteins. These animals were challenged intrarectally with pathogenic molecularly cloned SIVmac239, which is resistant to neutralization. The immunization regimen resulted in the induction of virus-specific CD8(+) and CD4(+) responses in all vaccinees. Although anamnestic neutralizing antibody responses against laboratory-adapted SIVmac251 developed after the challenge, no neutralizing antibodies against SIVmac239 were detectable. Vaccinated animals had significantly reduced peak viremia compared with controls (P < 0.01). However, despite the induction of virus-specific cellular immune responses and reduced peak viral loads, most animals still suffered from gradual CD4 depletion and progressed to disease.  相似文献   

9.
Dengue fever, caused by dengue viruses(DENVs), is a widespread mosquito-borne zoonotic disease; however, there is no available anti-dengue vaccine for worldwide use. In the current study, a DNA vaccine candidate(pV-D4 ME) expressing prM-E protein of DENV serotype 4(DENV-4) was constructed, and its immunogenicity and protection were evaluated in immunocompetent BALB/c mice. The pV-D4 ME candidate vaccine induced effective humoral and cellular immunity of mice against DENV-4 in vivo when administered both at 50 μg and 5 μg through electroporation. Two weeks after receiving three immunizations, both doses of pV-D4 ME DNA were shown to confer effective protection against lethal DENV-4 challenge. Notably, at 6 months after the three immunizations, 50 μg, but not 5 μg, of pV-D4 ME could provide stable protection(100% survival rate) against DENV-4 lethal challenge without any obvious clinical signs. These results suggest that immunization with 50 μg pV-D4 ME through electroporation could confer effective and long-term protection against DENV-4, offering a promising approach for development of a novel DNA vaccine against DENVs.  相似文献   

10.
A highly effective attenuated equine infectious anemia virus (EIAV) vaccine (EIAV(D9)) capable of protecting 100% of horses from disease induced by a homologous Env challenge strain (EIAV(PV)) was recently tested in ponies to determine the level of protection against divergent Env challenge strains (J. K. Craigo, B. S. Zhang, S. Barnes, T. L. Tagmyer, S. J. Cook, C. J. Issel, and R. C. Montelaro, Proc. Natl. Acad. Sci. USA 104:15105-15110, 2007). An inverse correlation between challenge strain Env variation and vaccine protection from disease was observed. Given the striking differences in protective immunity, we hypothesized that analysis of the humoral and cellular immune responses to the Env protein could reveal potential determinants of vaccine protection. Neutralization activity against the homologous Env or challenge strain-specific Env in immune sera from the vaccinated ponies did not correlate with protection from disease. Cellular analysis with Env peptide pools did not reveal an association with vaccine protection from disease. However, when individual vaccine-specific Env peptides were utilized, eight cytotoxic-T-lymphocyte (CTL) peptides were found to associate closely with vaccine protection. One of these peptides also yielded the only lymphoproliferative response associated with protective immunity. The identified peptides spanned both variable and conserved regions of gp90. Amino acid divergence within the principal neutralization domain and the identified peptides profoundly affected immune recognition, as illustrated by the inability to detect cross-reactive neutralizing antibodies and the observation that certain peptide-specific CTL responses were altered. In addition to identifying potential Env determinants of EIAV vaccine efficacy and demonstrating the profound effects of defined Env variation on immune recognition, these data also illustrate the sensitivity offered by individual peptides compared to peptide pools in measuring cellular immune responses in lentiviral vaccine trials.  相似文献   

11.
Replication-defective adenovirus (ADV) and poxvirus vectors have shown potential as vaccines for pathogens such as Ebola or human immunodeficiency virus in nonhuman primates, but prior immunity to the viral vector in humans may limit their clinical efficacy. To overcome this limitation, the effect of prior viral exposure on immune responses to Ebola virus glycoprotein (GP), shown previously to protect against lethal hemorrhagic fever in animals, was studied. Prior exposure to ADV substantially reduced the cellular and humoral immune responses to GP expressed by ADV, while exposure to vaccinia inhibited vaccine-induced cellular but not humoral responses to GP expressed by vaccinia. This inhibition was largely overcome by priming with a DNA expression vector before boosting with the viral vector. Though heterologous viral vectors for priming and boosting can also overcome this effect, the paucity of such clinical viral vectors may limit their use. In summary, it is possible to counteract prior viral immunity by priming with a nonviral, DNA vaccine.  相似文献   

12.
Current influenza vaccines elicit antibodies effective against homologous strains, but new strategies are urgently needed for protection against emerging epidemic or pandemic strains. Although influenza vaccine candidates based on the viral nucleoprotein (NP) or matrix protein do not elicit sterilizing immunity, they have the advantage of inducing immunity that may cover a larger number of viral strains. In this study, recombinant NP produced in Escherichia coli was purified and formulated in combination with the adjuvant ISCOMATRIX. This formulation increased a NP-specific immunity in mice, with a Th1 profile, and may constitute a promising low-cost influenza vaccine candidate, with ability to stimulate humoral and cellular immune responses..  相似文献   

13.
14.
Vaccine-induced immunity to Ebola virus infection in nonhuman primates (NHPs) is marked by potent antigen-specific cellular and humoral immune responses; however, the immune mechanism of protection remains unknown. Here we define the immune basis of protection conferred by a highly protective recombinant adenovirus virus serotype 5 (rAd5) encoding Ebola virus glycoprotein (GP) in NHPs. Passive transfer of high-titer polyclonal antibodies from vaccinated Ebola virus-immune cynomolgus macaques to naive macaques failed to confer protection against disease, suggesting a limited role of humoral immunity. In contrast, depletion of CD3(+) T cells in vivo after vaccination and immediately before challenge eliminated immunity in two vaccinated macaques, indicating a crucial requirement for T cells in this setting. The protective effect was mediated largely by CD8(+) cells, as depletion of CD8(+) cells in vivo using the cM-T807 monoclonal antibody (mAb), which does not affect CD4(+) T cell or humoral immune responses, abrogated protection in four out of five subjects. These findings indicate that CD8(+) cells have a major role in rAd5-GP-induced immune protection against Ebola virus infection in NHPs. Understanding the immunologic mechanism of Ebola virus protection will facilitate the development of vaccines for Ebola and related hemorrhagic fever viruses in humans.  相似文献   

15.
Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRP(RVF)) vaccine candidate. Using a mouse model, we show that VRP(RVF) immunization provides the optimal balance of safety and single-dose robust efficacy. VRP(RVF) can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRP(RVF) proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRP(RVF), although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD(50)). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRP(RVF) immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection.  相似文献   

16.
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years.  相似文献   

17.
Lassa and Ebola viruses cause acute, often fatal, hemorrhagic fever diseases, for which no effective vaccines are currently available. Although lethal human disease outbreaks have been confined so far to sub-Saharan Africa, they also pose significant epidemiological concern worldwide as demonstrated by several instances of accidental importation of the viruses into North America and Europe. In the present study, we developed experimental individual vaccines for Lassa virus and bivalent vaccines for Lassa and Ebola viruses that are based on an RNA replicon vector derived from an attenuated strain of Venezuelan equine encephalitis virus. The Lassa and Ebola virus genes were expressed from recombinant replicon RNAs that also encoded the replicase function and were capable of efficient intracellular self-amplification. For vaccinations, the recombinant replicons were incorporated into virus-like replicon particles. Guinea pigs vaccinated with particles expressing Lassa virus nucleoprotein or glycoprotein genes were protected from lethal challenge with Lassa virus. Vaccination with particles expressing Ebola virus glycoprotein gene also protected the animals from lethal challenge with Ebola virus. In order to evaluate a single vaccine protecting against both Lassa and Ebola viruses, we developed dual-expression particles that expressed glycoprotein genes of both Ebola and Lassa viruses. Vaccination of guinea pigs with either dual-expression particles or with a mixture of particles expressing Ebola and Lassa virus glycoprotein genes protected the animals against challenges with Ebola and Lassa viruses. The results showed that immune responses can be induced against multiple vaccine antigens coexpressed from an alphavirus replicon and suggested the possibility of engineering multivalent vaccines based upon alphavirus vectors for arenaviruses, filoviruses, and possibly other emerging pathogens.  相似文献   

18.
Lassa fever is a re-emerging viral hemorrhagic fever, which causes significant human morbidity in endemic regions of West Africa. Attempts to vaccinate against this virus in animal models including non-human primates have revealed that eliciting a strong cellular immune response protects from clinical disease, but not infection, in the absence of measurable neutralizing antibodies. As there is renewed interest in developing a vaccine against Lassa fever for use in humans, several questions should be addressed in view of the scarce knowledge of the mechanisms of natural immunity against this disease. MHC-dependency of a vaccine relying mainly on the induction of T-cell immunity and its ability to cross-protect against different Lassa virus strains will be important issues. Furthermore, the question whether the vaccine can prevent human-to-human transmission of the virus should be discussed and the possibility that vaccination could predispose to immunopathology should be excluded. We are addressing some of the above mentioned problems concerning natural immunity through field studies in the Republic of Guinea, West Africa, and are presently studying the CD4 cell responses of Lassa antibody positive subjects on the basis of T-cell proliferation assays using recombinant Lassa virus proteins.  相似文献   

19.
Trivalent inactivated vaccines (TIV) against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6'-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines.  相似文献   

20.
Three percent of the world's population is chronically infected with the hepatitis C virus (HCV) and at risk of developing liver cancer. Effective cellular immune responses are deemed essential for spontaneous resolution of acute hepatitis C and long-term protection. Here we describe a new T-cell HCV genetic vaccine capable of protecting chimpanzees from acute hepatitis induced by challenge with heterologous virus. Suppression of acute viremia in vaccinated chimpanzees occurred as a result of massive expansion of peripheral and intrahepatic HCV-specific CD8(+) T lymphocytes that cross-reacted with vaccine and virus epitopes. These findings show that it is possible to elicit effective immunity against heterologous HCV strains by stimulating only the cellular arm of the immune system, and suggest a path for new immunotherapy against highly variable human pathogens like HCV, HIV or malaria, which can evade humoral responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号