首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The coupling of chromosome conformation capture (3C) with next-generation sequencing technologies enables the high-throughput detection of long-range genomic interactions, via the generation of ligation products between DNA sequences, which are closely juxtaposed in vivo. These interactions involve promoter regions, enhancers and other regulatory and structural elements of chromosomes and can reveal key details of the regulation of gene expression. 3C-seq is a variant of the method for the detection of interactions between one chosen genomic element (viewpoint) and the rest of the genome. We present r3Cseq, an R/Bioconductor package designed to perform 3C-seq data analysis in a number of different experimental designs. The package reads a common aligned read input format, provides data normalization, allows the visualization of candidate interaction regions and detects statistically significant chromatin interactions, thus greatly facilitating hypothesis generation and the interpretation of experimental results. We further demonstrate its use on a series of real-world applications.  相似文献   

3.
The robust and tissue-specific activation of the human growth hormone (hGH) gene cluster in the pituitary and placenta constitutes an informative model for analysis of gene regulation. The five-gene hGH cluster is regulated by two partially overlapping sets of DNase I hypersensitive sites (HSs) that constitute the pituitary (HSI, II, III and V) and placental (HSIII, IV, and V) locus control regions (LCRs). The single placenta-specific LCR component, HSIV, is located at −30 kb to the cluster. Here we generate a series of hGH/BAC transgenes specifically modified to identify structural features of the hGH locus required for its appropriate placental expression. We find that placental specificity is dependent on the overall multigene configuration of the cluster whereas the distance between the cluster and its LCR impacts the level of placental expression. We further observe that a major function of the placental hGH LCR is to insulate the transgene locus from site-of-integration effects. This insulation activity is linked to placenta-specific occupancy of the chromatin architectural protein, CTCF, at HSIV. These data reveal a remarkable combination of structural configurations and regulatory determinants that must work in concert to insure robust and tightly controlled expression from a complex multigene locus.  相似文献   

4.
Submicroscopic duplications along the long arm of the X-chromosome with known phenotypic consequences are relatively rare events. The clinical features resulting from such duplications are various, though they often include intellectual disability, microcephaly, short stature, hypotonia, hypogonadism and feeding difficulties. Female carriers are often phenotypically normal or show a similar but milder phenotype, as in most cases the X-chromosome harbouring the duplication is subject to inactivation. Xq28, which includes MECP2 is the major locus for submicroscopic X-chromosome duplications, whereas duplications in Xq25 and Xq26 have been reported in only a few cases. Using genome-wide array platforms we identified overlapping interstitial Xq25q26 duplications ranging from 0.2 to 4.76 Mb in eight unrelated families with in total five affected males and seven affected females. All affected males shared a common phenotype with intrauterine- and postnatal growth retardation and feeding difficulties in childhood. Three had microcephaly and two out of five suffered from epilepsy. In addition, three males had a distinct facial appearance with congenital bilateral ptosis and large protruding ears and two of them showed a cleft palate. The affected females had various clinical symptoms similar to that of the males with congenital bilateral ptosis in three families as most remarkable feature. Comparison of the gene content of the individual duplications with the respective phenotypes suggested three critical regions with candidate genes (AIFM1, RAB33A, GPC3 and IGSF1) for the common phenotypes, including candidate loci for congenital bilateral ptosis, small head circumference, short stature, genital and digital defects.  相似文献   

5.
The GH gene cluster in marmoset, Callithrix jacchus, comprises eight GH-like genes and pseudogenes and appears to have arisen as a consequence of gene duplications occurring independently of those leading to the human GH gene cluster. We report here the complete sequence of the marmoset GH gene locus, including the intergenic regions and 5′ and 3′ flanking sequence, and a study of the multiple GH-like genes of an additional New World monkey (NWM), the white-fronted capuchin, Cebus albifrons. The marmoset sequence includes 945 nucleotides (nt) of 5′ flanking sequence and 1596 nt of 3′ flanking sequence that are “unique”; between these are eight repeat units, including the eight GH genes/pseudogenes. The breakpoints between these repeats are very similar, indicating a regular pattern of gene duplication. These breakpoints do not correspond to those found in the much less regular human GH gene cluster. This and phylogenetic analysis of the repeat units within the marmoset gene cluster strongly support the independent origin of these gene clusters, and the idea that the episode of rapid evolution that occurred during GH evolution in primates preceded the gene duplications. The marmoset GH gene cluster also differs from that of human in having fewer and more evenly distributed Alu sequences (a single pair in each repeat unit) and a “P-element” upstream of every gene/pseudogene. In human there is no P-element upstream of the gene encoding pituitary GH, and these elements have been implicated in placental expression of the other genes of the cluster. The GH gene clusters in marmoset and capuchin appear to have arisen as the consequence of a single-gene duplication event, but in capuchin there was then a remarkable expansion of the GH locus, giving at least 40 GH-like genes and pseudogenes. Thus even among NWMs the GH gene cluster is very variable. [Reviewing Editor: Nicolas Galtier]  相似文献   

6.
7.
8.
9.
10.
11.
12.
Summary We have analysed two duplications of the X chromosome in male patients using chromosome replication and DNA methylation patterns as determinants of the functional status of the duplicated segments. In both cases, the large duplicated regions, Xq12-q22 and Xq26.3-qter, were not inactivated. A review of previously reported male cases revealed that these duplications were also not subject to inactivation. Taken together, the examined duplications cover almost the entire X chromosome except the pericentromeric region and Xq25–26. Thus, most regions of the X chromosome can be present in two functional copies without lethal consequences.  相似文献   

13.
14.
15.
Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides −496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides −308/−235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (−264/−259) and investigated whether HIF-1 is associated with insulin regulation of “endogenous” hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.  相似文献   

16.
17.
18.
Molecular cloning, molecular phylogeny, gene structure and expression analyses of growth hormone (GH) were performed in a passerine bird, the jungle crow (Corvus macrorhynchos). Unexpectedly, duplicated GH cDNA and genes were identified and designated as GH1A and GH1B. In silico analyses identified the zebra finch orthologs. Both GH genes encode 217 amino acid residues and consist of five exons and four introns, spanning 5.2 kbp in GH1A and 4.2 kbp in GH1B. Predicted GH proteins of the jungle crow and zebra finch contain four conserved cysteine residues, suggesting duplicated GH genes are functional. Molecular phylogenetic analysis revealed that duplication of GH genes occur after divergence of the passerine lineage from the other avian orders as has been suggested from partial genomic DNA sequences of passerine GH genes. RT-PCR analyses confirmed expression of GH1A and GH1B in the pituitary gland. In addition, GH1A gene is expressed in all the tissues examined. However, expression of GH1B is confined to several brain areas and blood cells. These results indicate that the regulatory mechanisms of duplicated GH genes are different and that duplicated GH genes exert both endocrine and autocrine/paracrine functions.  相似文献   

19.
The growth hormone (GH) is a pluripotent hormone produced by the pituitary in vertebrates. It plays important roles in the growth, development, and metabolism of vertebrates.We cloned GH cDNA sequence of Pampus argenteus (GenBank: KT257176). Multi‐sequence analysis revealed P. argenteus GH cDNA contained four conservative cysteine residues positions (Cys69, Cys177, Cys194, and Cys202) and shared more than 51.5% identity with homologues from other reported bony fish GHs, except that of Lepisosteus osseus. We used semi‐quantitative RT‐PCR and quantitative real‐time PCR to detect GH expression in 10 tissues and GH expression levels in the pituitary at six different growth stages, and also detected GH content in serum at different growth stages . qPCR showed that GH mRNA was detected in the liver, muscle, kidney, intestine, pituitary, olfactory bulb, stomach, heart, gill, and ovary. The highest level of P. argenteus GH mRNA was observed in the pituitary (P < 0.01, n = 3). At different growth stages, P. argenteus GH expression first increased, decreased, and increased again. GH gene expression levels and the variations of serum GH levels of P. argenteus were consistent with the growth rate and associated with the sexual maturity. In addition, in situ hybridization was used to locate the GH expression in pituitary. In situ hybridization showed that the GH‐positive cells were round, oval, or irregular and often gathered into groups or presented branches along the nerve fibers.  相似文献   

20.
In mammalian cells, extracellular protons act as orthosteric and allosteric ligands for multiple receptors and channels. The aim of this study is to identify proton sensors in the rat pituitary gland. qRT-PCR analysis indicated the expression of G-protein-coupled receptor 68 gene (Gpr68) and acid-sensing ion channel (ASIC) genes Asic1, Asic2, and Asic4 in anterior pituitary cells and Asic1 and Asic2 in immortalized GH3 pituitary cells. Asic1a and Asic2b were the dominant splice isoforms. Single anterior pituitary cell RNA sequencing and immunocytochemical analysis showed that nonexcitable folliculostellate cells express GPR68 gene and protein, whereas excitable secretory cells express ASIC genes and proteins. Asic1 was detected in all secretory cell types, Asic2 in gonadotrophs, thyrotrophs, and somatotrophs, and Asic4 in lactotrophs. Extracellular acidification activated two types of currents in a concentration-dependent manner: a fast-developing, desensitizing current with an estimated EC50-value of pH 6.7 and a slow-developing, non-desensitizing current that required a higher proton concentration for activation. The desensitizing current was abolished by removal of bath sodium and application of amiloride, a blocker of ASIC channels, whereas the non-desensitizing current was amiloride insensitive and voltage dependent. Activation of both currents increased the excitability of secretory pituitary cells, consistent with their potential physiological relevance in control of voltage-gated calcium influx and calcium-dependent cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号