首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
广西眼镜蛇毒酸性磷脂酶A2具有抗凝血活性和溶血活性。采用悬滴气相扩散法,培养出该酶四方和立方两种晶型的单晶,并进行了X射线衍射鉴定。四方晶型的空间群为P43212或P41212,晶胞参数为α=b=8.797nm,c=10.831nm。每不对称单位中含3个分子;立方晶型的空间群为P213,晶胞参数为a=b=c=6.840nm,其不对称单位含1个分子,对两种晶型分别收集了0.28nm分辨率衍射数据。对不同地域眼镜蛇毒磷脂酶A2的晶体特性进行了比较。  相似文献   

3.
支气管哮喘(简称哮喘)是常见的慢性病,随着过敏患者的增加,小鼠过敏性哮喘模型的研究越来越重要。本文通过对近年来国内外小鼠过敏性哮喘的实验研究文献进行总结,从实验小鼠的选择、制备模型的方法及模型的评价指标等方面进行综合分析,为进一步开展哮喘研究提供帮助。  相似文献   

4.
5.
两种变应性接触性皮炎动物模型的建立及比较   总被引:3,自引:0,他引:3  
目的比较两种动物作为变应性接触性皮炎(allergic contact dermatitis,ACD)模型各自的优势,为实际应用中恰当选择动物模型提供依据。方法利用二硝基氯苯(dinitrochlorobenzene,DNCB)作为致敏剂,以腹部致敏、背部激发的方法分别建立豚鼠(连续激发4次)和小鼠(1次激发)两种ACD动物模型,并以丙酮作为对照。激发后0~96h,对激发部位进行动态分级。激发后96h,H-E染色观察激发部位皮肤病理变化,并计算脾指数和胸腺指数。结果动态评分结果显示:豚鼠激发后72h红斑程度最强,临床分级以3级为主,并于72~96h保持不变;小鼠激发后24h红斑程度最强,临床分级以4级为主,48h后红斑程度减轻。病理结果显示:两种模型激发部位皮肤内均有大量炎症细胞浸润。脾指数和胸腺指数计算结果显示:两种动物模型的脾指数和胸腺指数均较对照组明显增加(P〈0.05)。结论通过上述方法分别成功建立了豚鼠和小鼠ACD动物模型。豚鼠红斑程度较弱,且出现较晚,持续时间较长;小鼠红斑程度较强,出现较早,持续时间较短。  相似文献   

6.
7.
The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.  相似文献   

8.
The mammalian target of rapamycin (mTOR) plays an important role in cell growth/differentiation, integrating environmental cues, and regulating immune responses. Our lab previously demonstrated that inhibition of mTOR with rapamycin prevented house dust mite (HDM)-induced allergic asthma in mice. Here, we utilized two treatment protocols to investigate whether rapamycin, compared to the steroid, dexamethasone, could inhibit allergic responses during the later stages of the disease process, namely allergen re-exposure and/or during progression of chronic allergic disease. In protocol 1, BALB/c mice were sensitized to HDM (three i.p. injections) and administered two intranasal HDM exposures. After 6 weeks of rest/recovery, mice were re-exposed to HDM while being treated with rapamycin or dexamethasone. In protocol 2, mice were exposed to HDM for 3 or 6 weeks and treated with rapamycin or dexamethasone during weeks 4–6. Characteristic features of allergic asthma, including IgE, goblet cells, airway hyperreactivity (AHR), inflammatory cells, cytokines/chemokines, and T cell responses were assessed. In protocol 1, both rapamycin and dexamethasone suppressed goblet cells and total CD4+ T cells including activated, effector, and regulatory T cells in the lung tissue, with no effect on AHR or total inflammatory cell numbers in the bronchoalveolar lavage fluid. Rapamycin also suppressed IgE, although IL-4 and eotaxin 1 levels were augmented. In protocol 2, both drugs suppressed total CD4+ T cells, including activated, effector, and regulatory T cells and IgE levels. IL-4, eotaxin, and inflammatory cell numbers were increased after rapamycin and no effect on AHR was observed. Dexamethasone suppressed inflammatory cell numbers, especially eosinophils, but had limited effects on AHR. We conclude that while mTOR signaling is critical during the early phases of allergic asthma, its role is much more limited once disease is established.  相似文献   

9.
10.
Regional activities of phosphoinositide-specific phospholipase C (PLC) were measured after lateral fluid percussion (FP) brain injury in rats. The activity of PLC on phosphatidylinositol 4,5-bisphosphate (PIP2) in the rat cortex required calcium, and at 45 M concentration it increased PLC activity by about ten-fold. The activity of PLC was significantly increased in the cytosol fraction in the injured (left) cortex (IC) at 5 min, 30 min and 120 min after brain injury. However, in the same site, increases were observed in the membrane fraction only at 5 min after brain injury. In both the contralateral (right) cortex (CC) and ipsilateral hippocampus (IH), the activity of PLC was increased in the cytosol only at 5 min after brain injury. These results suggest that increased activity of PLC may contribute to increases in levels of cellular diacylglycerol and inositol trisphosphate in the IC (the greatest site of injury), and to a smaller extent in the IH and CC, after lateral FP brain injury. It is likely that this increased PLC activity is caused by alteration in either the levels or activities of one or more of its isozymes (PLC, PLC, and PLC) after FP brain injury.  相似文献   

11.
Phospholipase A2 was isolated from Trypanosoma congolense and purified to electrophoretic homogeneity. The enzyme appeared to exist in a dimeric form with subunit molecular weights of 16 500 and 18 000. It had a pH optimum of 6·8. Kinetic analysis with different substrates, showed that the enzyme had exceptional specificity for 1,2,dimyristoyl-sn-phosphatidylcholine and 1,2,dioleoyl-sn-phosphatidylcholine with Km values of 1·85 × 10?3 M and 2·12 × 10?3 M respectively. The Arrhenius plot was linear with an activation energy of 5·8 kcal mol?1. Inhibition studies with parahydroxymercuribenzoate and tri-butyltinoxide were positive thus implicating a thiol group at the catalytic site of the enzyme. The enzyme was stable to heat treatment and possessed haemolytic and anticoagulating properties.  相似文献   

12.
Cryptosporidiosis is a gastrointestinal disease in humans and animals caused by infection with the protozoan parasite Cryptosporidium. In healthy individuals, the disease manifests mainly as acute self-limiting diarrhoea, but may be chronic and life threatening for those with compromised immune systems. Control and treatment of the disease is challenged by the lack of sensitive diagnostic tools and broad-spectrum chemotherapy. Metabolomics, or metabolite profiling, is an emerging field of study, which enables characterisation of the end products of regulatory processes in a biological system. Analysis of changes in metabolite patterns reflects changes in biochemical regulation, production and control, and may contribute to understanding the effects of Cryptosporidium infection in the host environment. In the present study, metabolomic analysis of faecal samples from experimentally infected mice was carried out to assess metabolite profiles pertaining to the infection. Gas-chromatography mass spectrometry (GC-MS) carried out on faecal samples from a group of C. parvum infected mice and a group of uninfected control mice detected a mean total of 220 compounds. Multivariate analyses showed distinct differences between the profiles of C. parvum infected mice and uninfected control mice,identifying a total of 40 compounds, or metabolites that contributed most to the variance between the two groups. These metabolites consisted of amino acids (n = 17), carbohydrates (n = 8), lipids (n = 7), organic acids (n = 3) and other various metabolites (n = 5), which showed significant differences in levels of metabolite abundance between the infected and uninfected mice groups (p < 0.05). The metabolites detected in this study as well as the differences in abundance between the C. parvum infected and the uninfected control mice, highlights the effects of the infection on intestinal permeability and the fate of the metabolites as a result of nutrient scavenging by the parasite to supplement its streamlined metabolism.  相似文献   

13.
Twelve out of twenty-nine compounds isolated from benthic marine algae from the phyla Chlorophyta, Phaeophyta and Rhodophyta have been found to be potent inhibitors of bee venom derived phospholipase A2 (PLA2) (> 50%) in the M range. The compounds investigated were from: Bryopsis pennata, Rhipocephalus phoenix, Caulerpa prolifera, C. racemosa, C. bikinensis, Cymopolia barbata, Laurencia cf. palisada, Laurencia sp., Ochtodes crockeri, Liagora farinosa, Sphaerococcus coronipifolius, Phacelocarpus labillardieri, Dictyota sp., B furcaria galapagensis, Stypopodium zonale, Dictyopteris undulata, Stoechospermum marginatum, Dictyopteris divaricata, Dilophus fasciola and Dilophus sp. This is the first report of bee venom PLA2 inhibition in vitro by pure compounds isolated from marine algae.  相似文献   

14.
观察了脓毒血症大鼠心肌II型PLA2 活性、蛋白质含量及其m RNA 的变化。结果发现, 脓毒血症早期与晚期心肌II型PLA2 活性较对照组分别降低25 .0 % (P < 0 .05)及增高47.6 % (P < 0 .01),II型PLA2 蛋白质含量分别降低27.0% 及增高48 .0 %( 均P < 0 .01); 心肌II型PLA2 m RNA合成率与含量呈现类似的双相变化, 在脓毒血症早、晚期mRNA 合成率分别降低45.0% 和升高70.0 % (均P < 0 .01),mRNA含量分别降低34.1 % 和增加157 .0% (均P< 0 .01) 。脓毒血症早、晚期心脏II型PLA2 m RNA半衰期无显著变化(P > 0.05) 。实验结果表明大鼠脓毒血症发生过程中心肌II型PLA2 活性呈现出先下降后升高的变化, 这一变化受其mRNA 转录水平的调节。  相似文献   

15.
Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease. It has a substantial impact on patient quality of life and is a common cause of pain and mobility issues in older adults. The functional limitations, lack of curative treatments, and cost to society all demonstrate the need for translational and clinical research. The use of OA models in mice is important for achieving a better understanding of the disease. Models with clinical relevance are needed to achieve 2 main goals: to assess the impact of the OA disease (pain and function) and to study the efficacy of potential treatments. However, few OA models include practical strategies for functional assessment of the mice. OA signs in mice incorporate complex interrelations between pain and dysfunction. The current review provides a comprehensive compilation of mouse models of OA and animal evaluations that include static and dynamic clinical assessment of the mice, merging evaluation of pain and function by using automatic and noninvasive techniques. These new techniques allow simultaneous recording of spontaneous activity from thousands of home cages and also monitor environment conditions. Technologies such as videography and computational approaches can also be used to improve pain assessment in rodents but these new tools must first be validated experimentally. An example of a new tool is the digital ventilated cage, which is an automated home-cage monitor that records spontaneous activity in the cages.

Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease.36 Functional limitations, the absence of curative treatments, and the considerable cost to society result in a substantial impact on quality of life.76 Historically, OA has been described as whole joint and whole peri-articular diseases and as a systemic comorbidity.9,111 OA consists of a disruption of articular joint cartilage homeostasis leading to a catabolic pathway characterized by chondrocyte degeneration and destruction of the extracellular matrix (ECM). Low-grade chronic systemic inflammation is also actively involved in the process.42,92 In clinical practice, mechanical pain, often accompanied by a functional decline, is the main reason for consultations. Recommendations to patients provide guidance for OA management.22, 33,49,86 Evidence-based consensus has led to a variety of pharmacologic and nonpharmacologic modalities that are intended to guide health care providers in managing symptomatic patients. Animal-based research is of tremendous importance for the study of early diagnosis and treatment, which are crucial to prevent the disease progression and provide better care to patients.The purpose of animal-based OA research is 2-fold: to assess the impact of the OA disease (pain and function) and to study the efficacy of a potential treatment.18,67 OA model species include large animals such as the horse, goat, sheep, and dog, whose size and anatomy are expected to better reflect human joint conditions. However, small animals such as guinea pig, rabbit, mouse, and rat represent 77% of the species used.1,87 In recent years, mice have become the most commonly used model for studying OA. Mice have several advantageous characteristics: a short development and life span, easy and low-cost breeding and maintenance, easy handling, small joints that allow histologic analysis of the whole joint,32 and the availability of genetically modified lines.108 Standardized housing, genetically defined strains and SPF animals reduce the genetic and interindividual acquired variability. Mice are considered the best vertebrate model in terms of monitoring and controlling environmental conditions.7,14,15,87 Mouse skeletal maturation is reached at 10 wk, which theoretically constitutes the minimal age at which mice should be entered into an OA study.64,87,102 However, many studies violate this limit by testing mice at 8 wk of age.Available models for OA include the following (32,111 physical activity and exercise induced OA; noninvasive mechanical loading (repetitive mild loading and single-impact injury); and surgically induced (meniscectomy models or anterior cruciate ligament transection). The specific model used would be based on the goal of the study.7 For example, OA pathophysiology, OA progression, and OA therapies studies could use spontaneous, genetic, surgical, or noninvasive models. In addition, pain studies could use chemical models. Lastly, post-traumatic studies would use surgical or noninvasive models; the most frequently used method is currently destabilization of the medial meniscus,32 which involves transection of the medial meniscotibial ligament, thereby destabilizing the joint and causing instability-driven OA. An important caveat for mouse models is that the mouse and human knee differ in terms of joint size, joint biomechanics, and histologic characteristics (layers, cellularity),32,64 and joint differences could confound clinical translation.10 Table 1. Mouse models of osteoarthritis.
ModelsProsCons
SpontaneousWild type mice7,9,59,67,68,70,72,74,80,85,87,115,118,119,120- Model of aging phenotype
- The less invasive model
- Physiological relevance: mimics human pathogenesis
- No need for technical expertise
- No need for specific equipment
- Variability in incidence
- Large number of animals at baseline
- Long-term study: Time consuming (time of onset: 4 -15 mo)
- Expensive (husbandry)
Genetically modified mice2,7,25,40,50,52,67,72,79,80, 89,120- High incidence
- Earlier time of onset: 18 wk
- No need for specific equipment
- Combination with other models
- Time consuming for the strain development
- Expensive
Chemical- inducedMono-iodoacetate injection7,11,46,47,60,66,90,91,101,128- Model of pain-like phenotype
- To study mechanism of pain and antalgic drugs
- Short-term study: Rapid progression (2-7 wk)
- Reproducible
- Low cost
- Need for technical expertise
- Need for specific equipment
- Systemic injection is lethal
- Destructive effect: does not allow to study the early phase of pathogenesis
Papain injection66,67,120- Short-term study: rapid progression
- Low cost
- Need for technical expertise
- Need for specific equipment
- Does not mimic natural pathogenesis
Collagenase injection7,65,67,98- Short-term study: rapid progression (3 wk)
- Low cost
- Need for technical expertise
- Need for specific equipment
- Does not mimic natural pathogenesis
Non-invasiveHigh-fat diet (Alimentary induced obesity model)5,8,43,45,57,96,124Model of metabolic phenotype
No need for technical expertise
No need for specific equipment
Reproducible
Long-term study: Time consuming (8 wk–9 mo delay)
Expensive
Physical activity and exercise model45,73Model of post traumatic phenotype
No need for technical expertise
Long-term study: time consuming (18 mo delay)
Expensive
Disparity of results
Mechanical loading models Repetitive mild loading models Single-impact injury model7,16,23,24, 32,35,104,105,106Model of post traumatic phenotype
Allow to study OA development
Time of onset: 8-10 wk post injury
Noninvasive
Need for technical expertise
Need for specific equipment
Heterogeneity in protocol practices
Repetitive anesthesia required or ethical issues
SurgicalOvariectomy114Contested.
Meniscectomy model7,32,63,67,87 Model of post traumatic phenotype
High incidence
Short-term study: early time of onset (4 wk from surgery)
To study therapies
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Anterior cruciate ligament transection (ACLT)7,39,40,61,48,67,70,87,126Model of posttraumatic phenotype
High incidence
Short-term study: early time of onset (3-10 wk from surgery)
Reproducible
To study therapies
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Destabilization of medial meniscus (DMM)7,32,39,40Model of post traumatic phenotype
High incidence
Short-term study: early time of onset (4 wk from surgery)
To study therapies
The most frequently used method
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Open in a separate windowSince all animal models have strengths and weaknesses, it is often best to plan using a number of models and techniques together to combine the results.In humans, the lack of correlation between OA imaging assessment and clinical signs highlights the need to consider the functional data and the quality of life to personalize OA management. Clinical outcomes are needed to achieve 2 main goals: to assess the impact of the OA in terms of pain and function and to study the efficacy of treatments.65 Recent reviews offer few practical approaches to mouse functional assessment and novel approaches to OA models in mice.7,32,67,75,79,83,87, 100,120 This review will focus on static and dynamic clinical assessment of OA using automatic and noninvasive emerging techniques (
Test nameTechniquesKind of assessmentOutputSpecific equipment required
Static measurement
Von Frey filament testingCalibrated nylon filaments of various thickness (and applied force) are pressed against the skin of the plantar surface of the paw in ascending order of forceStimulus- evoked pain-like behavior
Mechanical stimuli - Tactile allodynia
The most commonly used test
Latency to paw withdrawal
and
Force exerted are recorded
Yes
Knee extension testApply a knee extension on both the intact and affected knee
or
Passive extension range of the operated knee joint under anesthesia
Stimulus-evoked pain-like behaviorNumber of vocalizations evoked in 5 extensionsNone
HotplateMouse placed on hotplate. A cutoff latency has been determined to avoid lesionsStimulus-evoked pain-like behavior
Heat stimuli- thermal sensitivity
Latency of paw withdrawalYes
Righting abilityMouse placed on its backNeuromuscular screeningLatency to regain its footingNone
Cotton swab testBringing a cotton swab into contact with eyelashes, pinna, and whiskersStimulus-evoked pain-like behavior
Neuromuscular screening
Withdrawal or twitching responseNone
Spontaneous activity
Spontaneous cage activityOne by one the cages must be laid out in a specific platformSpontaneous pain behavior
Nonstimulus evoked pain
Activity
Vibrations evoked by animal movementsYes
Open field analysisExperiment is performed in a clear chamber and mice can freely exploreSpontaneous pain behavior
Nonstimulus evoked pain
Locomotor analysis
Paw print assessment
Distance traveled, average walking speed, rest time, rearing
Yes
Gait analysisMouse is placed in a specific cage equipped with a fluorescent tube and a glass plate allowing an automated quantitative gait analysisNonstimulus evoked pain
Gait analysis
Indirect nociception
Intensity of the paw contact area, velocity, stride frequency, length, symmetry, step widthYes
Dynamic weight bearing systemMouse placed is a specific cage. This method is a computerized capacitance meter (similar to gait analysis)Nonstimulus evoked pain
Weight-bearing deficits
Indirect nociception
Body weight redistribution to a portion of the paw surfaceYes
Voluntary wheel runningMouse placed is a specific cage with free access to stainless steel activity wheels. The wheel is connected to a computer that automatically record dataNonstimulus evoked pain
Activity
Distance traveled in the wheelYes
Burrowing analysisMouse placed is a specific cage equipped with steel tubes (32 cm in length and 10 cm in diameter) and quartz sand in Plexiglas cages (600 · 340x200 mm)Nonstimulus evoked pain
Activity
Amount of sand burrowedYes
Digital video recordingsMouse placed is a specific cage according to the toolNonstimulus evoked pain
Or
Evoked pain
Scale of pain or specific outcomeYes
Digital ventilated cage systemNondisrupting capacitive-based technique: records spontaneous activity 24/7, during both light and dark phases directly from the home cage rackSpontaneous pain behavior
Nonstimulus evoked pain
Activity-behavior
Distance walked, average speed, occupation front, occupation rear, activation density.
Animal locomotion index, animal tracking distance, animal tracking speed, animal running wheel distance and speed or rotation
Yes
Challenged activity
Rotarod testGradual and continued acceleration of a rotating rod onto which mice are placedMotor coordination
Indirect nociception
Rotarod latency: riding time and speed with a maximum cut off.Yes
Hind limb and fore grip strengthMouse placed over a base plate in front of a connected grasping toolMuscle strength of limbsPeak force, time resistanceYes
Wire hang analysisSuspension of the mouse on the wire and start the timeMuscle strength of limbs: muscle function and coordinationLatency to fall grippingNone
(self -constructed)
Open in a separate windowPain cannot be directly measured in rodents, so methods have been developed to quantify “pain-like” behaviors. The clinical assessment of mice should be tested both before and after the intervention (induced-OA ± administration of treatment) to take into account the habituation and establish a baseline to compare against.  相似文献   

16.
Physiological Functions of Nedd4-2: Lessons from Knockout Mouse Models     
Jantina A. Manning  Sharad Kumar 《Trends in biochemical sciences》2018,43(8):635-647
  相似文献   

17.
Phospholipase A2 in cnidaria     
Nevalainen TJ  Peuravuori HJ  Quinn RJ  Llewellyn LE  Benzie JA  Fenner PJ  Winkel KD 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,139(4):171-735
Phospholipase A2 (PLA2) is an enzyme present in snake and other venoms and body fluids. We measured PLA2 catalytic activity in tissue homogenates of 22 species representing the classes Anthozoa, Hydrozoa, Scyphozoa and Cubozoa of the phylum Cnidaria. High PLA2 levels were found in the hydrozoan fire coral Millepora sp. (median 735 U/g protein) and the stony coral Pocillopora damicornis (693 U/g) that cause skin irritation upon contact. High levels of PLA2 activity were also found in the acontia of the sea anemone Adamsia carciniopados (293 U/g). Acontia are long threads containing nematocysts and are used in defense and aggression by the animal. Tentacles of scyphozoan and cubozoan species had high PLA2 activity levels: those of the multitentacled box jellyfish Chironex fleckeri contained 184 U/g PLA2 activity. The functions of cnidarian PLA2 may include roles in the capture and digestion of prey and defense of the animal. The current observations support the idea that cnidarian PLA2 may participate in the sting site irritation and systemic envenomation syndrome resulting from contact with cnidarians.  相似文献   

18.
Phospholipase A2 in porifera     
Nevalainen TJ  Quinn RJ  Hooper JN 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,137(3):413-420
Phospholipase A2 (PLA2) catalytic activity was measured in aqueous extracts of 83 freeze-dried specimens representing 55 marine sponge species collected from the east coast of Australia including the Great Barrier Reef. High levels (>500 u/l) of PLA2 activity (defined as the amount of activity that releases 1 micromol of fatty acid per min) were found in four out of 55 species (7%), moderate activities (100-499 u/l) in 6/55 (11%), low activities (1-99 u/l) in 11/55 (20%) and no PLA2 activity in 34/55 (62%). Species with high PLA2 activity levels included Cymbastela coralliophila (2118 u/l, specific activity 10,590 u/g of protein), Acanthella cavernosa (1318 u/l, specific activity 2470 u/g), Spirastrella vagabunda (1036 u/l, specific activity 1727 u/g and Theonella swinhoei (567 u/l, specific activity 354 u/g). It was postulated that poriferan PLA2 may be involved in eicosanoid metabolism and antimicrobial and toxic defence of the animal.  相似文献   

19.
Phospholipase A2 in platelets     
I Kudo 《Seikagaku. The Journal of Japanese Biochemical Society》1987,59(12):1329-1333
  相似文献   

20.
Phospholipase A2 in astrocytes     
Sun GY  Xu J  Jensen MD  Yu S  Wood WG  González FA  Simonyi A  Sun AY  Weisman GA 《Molecular neurobiology》2005,31(1-3):27-41
Astrocytes comprise the major cell type in the central nervous system (CNS) and they are essential for support of neuronal functions by providing nutrients and regulating cell-to-cell communication. Astrocytes also are immune-like cells that become reactive in response to neuronal injury. Phospholipases A2 (PLA 2) are a family of ubiquitous enzymes that degrade membrane phospholipids and produce lipid mediators for regulating cellular functions. Three major classes of PLA 2 are expressed in astrocytes: group IV calcium-dependent cytosolic PLA 2 (cPLA2), group VI calcium-independent PLA 2 (iPLA2), and group II secretory PLA 2 (sPLA2). Upregulation of PLA 2 in reactive astrocytes has been shown to occur in a number of neurodegenerative diseases, including stroke and Alzheimer’s disease. This review focuses on describing the effects of oxidative stress, inflammation, and activation of G protein-coupled receptors on PLA 2 activation, arachidonic acid (AA) release, and production of prostanoids in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号