首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined whether intracranial neuroimaging abnormalities in those with mild traumatic brain injury (MTBI) (i.e., “complicated” MTBIs) are associated with worse subacute outcomes as measured by cognitive testing, symptom ratings, and/or diffusion tensor imaging (DTI). We hypothesized that (i) as a group, participants with complicated MTBIs would report greater symptoms and have worse neurocognitive outcomes than those with uncomplicated MTBI, and (ii) as a group, participants with complicated MTBIs would show more Diffusion Tensor Imaging (DTI) abnormalities. Participants were 62 adults with MTBIs (31 complicated and 31 uncomplicated) who completed neurocognitive testing, symptom ratings, and DTI on a 3T MRI scanner approximately 6-8 weeks post injury. There were no statistically significant differences between groups on symptom ratings or on a broad range of neuropsychological tests. When comparing the groups using tract-based spatial statistics for DTI, no significant difference was found for axial diffusivity or mean diffusivity. However, several brain regions demonstrated increased radial diffusivity (purported to measure myelin integrity), and decreased fractional anisotropy in the complicated group compared with the uncomplicated group. Finally, when we extended the DTI analysis, using a multivariate atlas based approach, to 32 orthopedic trauma controls (TC), the findings did not reveal significantly more areas of abnormal DTI signal in the complicated vs. uncomplicated groups, although both MTBI groups had a greater number of areas with increased radial diffusivity compared with the trauma controls. This study illustrates that macrostructural neuroimaging changes following MTBI are associated with measurable changes in DTI signal. Of note, however, the division of MTBI into complicated and uncomplicated subtypes did not predict worse clinical outcome at 6-8 weeks post injury.  相似文献   

2.
Photographic identity documents (IDs) are commonly used despite clear evidence that unfamiliar face matching is a difficult and error-prone task. The current study set out to examine the performance of seven individuals with extraordinary face recognition memory, so called “super recognisers” (SRs), on two face matching tasks resembling border control identity checks. In Experiment 1, the SRs as a group outperformed control participants on the “Glasgow Face Matching Test”, and some case-by-case comparisons also reached significance. In Experiment 2, a perceptually difficult face matching task was used: the “Models Face Matching Test”. Once again, SRs outperformed controls both on group and mostly in case-by-case analyses. These findings suggest that SRs are considerably better at face matching than typical perceivers, and would make proficient personnel for border control agencies.  相似文献   

3.

Background/Objective

The underlying mechanism of fatigue in multiple sclerosis (MS) remains poorly understood. Our study investigates the involvement of the ascending reticular activating system (ARAS), originating in the pontine brainstem, in MS patients with symptoms of fatigue.

Methods

Female relapsing-remitting MS patients (n = 17) and controls (n = 15) underwent a magnetic resonance spectroscopic imaging protocol at 1.5T. Fatigue was assessed in every subject using the Fatigue Severity Scale (FSS). Using an FSS cut-off of 36, patients were categorized into a low (n = 9, 22 ± 10) or high (n = 10, 52 ± 6) fatigue group. The brain metabolites N-acetylaspartate (NAA) and total creatine (tCr) were measured from sixteen 5x5x10 mm3 spectroscopic imaging voxels in the rostral pons.

Results

MS patients with high fatigue had lower NAA/tCr concentration in the tegmental pons compared to control subjects. By using NAA and Cr values in the cerebellum for comparison, these NAA/tCr changes in the pons were driven by higher tCr concentration, and that these changes were focused in the WM regions.

Discussion/Conclusion

Since there were no changes in NAA concentration, the increase in tCr may be suggestive of gliosis, or an imbalanced equilibrium of the creatine and phosphocreatine ratio in the pons of relapsing-remitting MS patients with fatigue.  相似文献   

4.
Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical “small-world” architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical “small-world” architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.  相似文献   

5.
Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.  相似文献   

6.

Background and Aim

High tidal volume (VT) ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS) and/or diffusion tensor imaging (DTI) can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs.

Methods

Newborn lambs (0.85 gestation) were stabilized with a “protective ventilation” strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP) 5 cmH2O) or an initial 15 minutes of “injurious ventilation” (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf) followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla). For measures of mean/axial/radial diffusivity (MD, AD, RD) and fractional anisotropy (FA), 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms) encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac) relative to N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman''s correlations.

Results

No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups.

Conclusion

Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is able to detect the initiation of ventilation-induced brain injury.  相似文献   

7.
People often speak of success (e.g., “advance”) and failure (e.g., “setback”) as if they were forward versus backward movements through space. Two experiments sought to examine whether grounded associations of this type influence motor behavior. In Experiment 1, participants categorized success versus failure words by moving a joystick forward or backward. Failure categorizations were faster when moving backward, whereas success categorizations were faster when moving forward. Experiment 2 removed the requirement to categorize stimuli and used a word rehearsal task instead. Even without Experiment 1’s response procedures, a similar cross-over interaction was obtained (e.g., failure memorizations sped backward movements relative to forward ones). The findings are novel yet consistent with theories of embodied cognition and self-regulation.  相似文献   

8.
9.
Stone tools provide some of the most abundant, continuous, and high resolution evidence of behavioral change over human evolution, but their implications for cognitive evolution have remained unclear. We investigated the neurophysiological demands of stone toolmaking by training modern subjects in known Paleolithic methods (“Oldowan”, “Acheulean”) and collecting structural and functional brain imaging data as they made technical judgments (outcome prediction, strategic appropriateness) about planned actions on partially completed tools. Results show that this task affected neural activity and functional connectivity in dorsal prefrontal cortex, that effect magnitude correlated with the frequency of correct strategic judgments, and that the frequency of correct strategic judgments was predictive of success in Acheulean, but not Oldowan, toolmaking. This corroborates hypothesized cognitive control demands of Acheulean toolmaking, specifically including information monitoring and manipulation functions attributed to the "central executive" of working memory. More broadly, it develops empirical methods for assessing the differential cognitive demands of Paleolithic technologies, and expands the scope of evolutionary hypotheses that can be tested using the available archaeological record.  相似文献   

10.
We employed a multi-scale clustering methodology known as “data cloud geometry” to extract functional connectivity patterns derived from functional magnetic resonance imaging (fMRI) protocol. The method was applied to correlation matrices of 106 regions of interest (ROIs) in 29 individuals with autism spectrum disorders (ASD), and 29 individuals with typical development (TD) while they completed a cognitive control task. Connectivity clustering geometry was examined at both “fine” and “coarse” scales. At the coarse scale, the connectivity clustering geometry produced 10 valid clusters with a coherent relationship to neural anatomy. A supervised learning algorithm employed fine scale information about clustering motif configurations and prevalence, and coarse scale information about intra- and inter-regional connectivity; the algorithm correctly classified ASD and TD participants with sensitivity of and specificity of . Most of the predictive power of the logistic regression model resided at the level of the fine-scale clustering geometry, suggesting that cellular versus systems level disturbances are more prominent in individuals with ASD. This article provides validation for this multi-scale geometric approach to extracting brain functional connectivity pattern information and for its use in classification of ASD.  相似文献   

11.
Despite the well-established involvement of both sensory (“bottom-up”) and cognitive (“top-down”) processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported “far-transfer” to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.  相似文献   

12.

Objective

To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO).

Methods

40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI).

Results

LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02).

Conclusions

This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.  相似文献   

13.

Background

Up to 30% of recently diagnosed MS patients lose their jobs in the first four years after diagnosis. Taking into account the personal and socio-economic importance of sustaining employment, it is of the utmost importance to examine factors involved with work participation.

Objective

To investigate differences in self-reported functioning in recently diagnosed MS patients with and without a paid job.

Methods

Self-reports of physical and cognitive functioning, depression, anxiety and fatigue were gathered from 44 relapsing-remitting MS patients diagnosed within 3 years.

Results

Patients with a paid job (57%) reported better physical functioning (p<0.001), better memory functioning (p = 0.01) and a lower physical impact of fatigue (p = 0.018) than patients without a paid job. Physical functioning was the main predictor of employment status in a logistic regression model. In those with a paid job better memory functioning (r = 0.54, p = 0.005) and a lower social impact of fatigue (r = −0.46, p = 0.029) correlated with an increased number of working hours.

Conclusion

Better physical functioning is the primary factor involved with increased work participation in early MS. Better self-reported memory functioning and less social fatigue were associated with increased working hours. These findings highlight the importance of battling these symptoms in the early stages of MS.  相似文献   

14.

Background

The brainstem is the main region that innervates neurotransmitter release to the Hypothalamic-Pituitary Adrenal (HPA) axis and fronto-limbic circuits, two key brain circuits found to be dysfunctional in Major Depressive Disorder (MDD). However, the brainstem’s role in MDD has only been evaluated in limited reports. Using Diffusion Tensor Imaging (DTI), we investigated whether major brainstem white matter tracts that relate to these two circuits differ in MDD patients compared to healthy controls.

Methods

MDD patients (n = 95) and age- and gender-matched controls (n = 34) were assessed using probabilistic tractography of DTI to delineate three distinct brainstem tracts: the nigrostriatal tract (connecting brainstem to striatum), solitary tract (connecting brainstem to amygdala) and corticospinal tract (connecting brainstem to precentral cortex). Fractional anisotropy (FA) was used to measure the white matter integrity of these tracts, and measures were compared between MDD and control participants.

Results

MDD participants were characterized by a significant and specific decrease in white matter integrity of the right solitary tract (p<0.009 using independent t-test), which is a “bottom up” afferent pathway that connects the brainstem to the amygdala. This decrease was not related to symptom severity.

Conclusions

The results provide new evidence to suggest that structural connectivity between the brainstem and the amygdala is altered in MDD. These results are interesting in light of predominant theories regarding amygdala-mediated emotional reactivity observed in functional imaging studies of MDD. The characterization of altered white matter integrity in the solitary tract in MDD supports the possibility of dysfunctional brainstem-amygdala connectivity impacting vulnerable circuits in MDD.  相似文献   

15.
We investigate the effect of spatial categories on visual perception. In three experiments, participants made same/different judgments on pairs of simultaneously presented dot-cross configurations. For different trials, the position of the dot within each cross could differ with respect to either categorical spatial relations (the dots occupied different quadrants) or coordinate spatial relations (the dots occupied different positions within the same quadrant). The dot-cross configurations also varied in how readily the dot position could be lexicalized. In harder-to-name trials, crosses formed a “+” shape such that each quadrant was associated with two discrete lexicalized spatial categories (e.g., “above” and “left”). In easier-to-name trials, both crosses were rotated 45° to form an “×” shape such that quadrants were unambiguously associated with a single lexicalized spatial category (e.g., “above” or “left”). In Experiment 1, participants were more accurate when discriminating categorical information between easier-to-name categories and more accurate at discriminating coordinate spatial information within harder-to-name categories. Subsequent experiments attempted to down-regulate or up-regulate the involvement of language in task performance. Results from Experiment 2 (verbal interference) and Experiment 3 (verbal training) suggest that the observed spatial relation type-by-nameability interaction is resistant to online language manipulations previously shown to affect color and object-based perceptual processing. The results across all three experiments suggest that robust biases in the visual perception of spatial relations correlate with patterns of lexicalization, but do not appear to be modulated by language online.  相似文献   

16.
Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a “brain wave” machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion’s contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion.  相似文献   

17.
A significant percentage of individuals diagnosed with mild traumatic brain injury (mTBI) experience persistent post-concussive symptoms (PPCS). Little is known about the pathology of these symptoms and there is often no radiological evidence based on conventional clinical imaging. We aimed to utilize methods to evaluate microstructural tissue changes and to determine whether or not a link with PPCS was present. A novel analysis method was developed to identify abnormalities in high-resolution diffusion tensor imaging (DTI) when the location of brain injury is heterogeneous across subjects. A normative atlas with 145 brain regions of interest (ROI) was built from 47 normal controls. Comparing each subject’s diffusion measures to the atlas generated subject-specific profiles of injury. Abnormal ROIs were defined by absolute z-score values above a given threshold. The method was applied to 11 PPCS patients following mTBI and 11 matched controls. Z-score information for each individual was summarized with two location-independent measures: “load” (number of abnormal regions) and “severity” (largest absolute z-score). Group differences were then computed using Wilcoxon rank sum tests. Results showed statistically significantly higher load (p = 0.018) and severity (p = 0.006) for fractional anisotropy (FA) in patients compared with controls. Subject-specific profiles of injury evinced abnormally high FA regions in gray matter (30 occurrences over 11 patients), and abnormally low FA in white matter (3 occurrences over 11 subjects). Subject-specific profiles provide important information regarding the pathology associated with PPCS. Increased gray matter (GM) anisotropy is a novel in-vivo finding, which is consistent with an animal model of brain trauma that associates increased FA in GM with pathologies such as gliosis. In addition, the individualized analysis shows promise for enhancing the clinical care of PPCS patients as it could play a role in the diagnosis of brain injury not revealed using conventional imaging.  相似文献   

18.
The cognitive and neural mechanisms for recognizing and categorizing behavior are not well understood in non-human animals. In the current experiments, pigeons and humans learned to categorize two non-repeating, complex human behaviors (“martial arts” vs. “Indian dance”). Using multiple video exemplars of a digital human model, pigeons discriminated these behaviors in a go/no-go task and humans in a choice task. Experiment 1 found that pigeons already experienced with discriminating the locomotive actions of digital animals acquired the discrimination more rapidly when action information was available than when only pose information was available. Experiments 2 and 3 found this same dynamic superiority effect with naïve pigeons and human participants. Both species used the same combination of immediately available static pose information and more slowly perceived dynamic action cues to discriminate the behavioral categories. Theories based on generalized visual mechanisms, as opposed to embodied, species-specific action networks, offer a parsimonious account of how these different animals recognize behavior across and within species.  相似文献   

19.

Background

Previous work suggested greater intellectual enrichment might moderate the negative impact of brain atrophy on cognition. This awaits confirmation in independent cohorts including investigation of the role of T2-lesion load (T2-LL), which is another important determinant of cognition in MS. We here thus aimed to test this cognitive reserve hypothesis by investigating whether educational attainment (EA) moderates the negative effects of both brain atrophy and T2-LL on cognitive function in a large sample of MS patients.

Methods

137 patients participated in the study. Cognition was assessed by the “Brief Repeatable Battery of Neuropsychological Tests.” T2-LL, normalized brain volume (global volume loss) and third ventricle width (regional volume loss) served as MRI markers.

Results

Both T2-LL and atrophy predicted worse cognition, with a stronger effect of T2-LL. Higher EA (as assessed by years of education) also predicted better cognition. Interactions showed that the negative effects of T2-LL and regional brain atrophy were moderated by EA.

Conclusions

In a cohort with different stages of MS, higher EA attenuated the negative effects of white matter lesion burden and third ventricle width (suggestive of thalamic atrophy) on cognitive performance. Actively enhancing cognitive reserve might thus be a means to reduce or prevent cognitive problems in MS in parallel to disease modifying drugs.  相似文献   

20.
Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI) data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively “switched” on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a “switch,” turning on and off one-shot learning as required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号