首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosome profiling identifies ribosome positions on translated mRNAs. A prominent feature of published datasets is the near complete absence of ribosomes in 3′ untranslated regions (3′UTR) although substantial ribosome density can be observed on non-coding RNAs. Here we perform ribosome profiling in cultured Drosophila and human cells and show that different features of translation are revealed depending on the nuclease and the digestion conditions used. Most importantly, we observe high abundance of ribosome protected fragments in 3′UTRs of thousands of genes without manipulation of translation termination. Affinity purification of ribosomes indicates that the 3′UTR reads originate from ribosome protected fragments. Association of ribosomes with the 3′UTR may be due to ribosome migration through the stop codon or 3′UTR mRNA binding to ribosomes on the coding sequence. This association depends primarily on the relative length of the 3′UTR and may be related to translational regulation or ribosome recycling, for which the efficiency is known to inversely correlate with 3′UTR length. Together our results indicate that ribosome profiling is highly dependent on digestion conditions and that ribosomes commonly associate with the 3′UTR, which may have a role in translational regulation.  相似文献   

2.
Does codon composition influence ribosome function?   总被引:6,自引:1,他引:5       下载免费PDF全文
Escherichia coli ribosomes pre-initiated with N-acetyl-Val-tRNAVal elongate strictly alternating poly(U-G) at a rate between eight and 12 peptide bonds per second per ribosome in vitro. Comparisons with poly(U)-primed poly(Phe) synthesis show that these systems function with the same rates which are close to those of protein synthesis in vivo. This indicates that, at least in vitro, codon composition has no marked influence on the speed of elongation when the concentration of ternary complex is saturating. Furthermore, the missense frequencies for the two polymers are within the same range: the missense substitution of Trp for Cys is 10(-4) and that of Met for Val is 10(-3) in the poly(U-G)-primed system. These data argue against models that explain the codon preference of certain gene families by postulating effects of high or low GC content of codons on the performance characteristics of ribosomes.  相似文献   

3.
Many viruses regulate translation of polycistronic mRNA using a −1 ribosomal frameshift induced by an RNA pseudoknot. When the ribosome encounters the pseudoknot barrier that resists unraveling, transient mRNA–tRNA dissociation at the decoding site, results in a shift of the reading frame. The eukaryotic frameshifting pseudoknot from the beet western yellow virus (BWYV) has been well characterized, both structurally and functionally. Here, we show that in order to obtain eukaryotic levels of frameshifting efficiencies using prokaryotic Escherichia coli ribosomes, which depend upon the structural integrity of the BWYV pseudoknot, it is necessary to shorten the mRNA spacer between the slippery sequence and the pseudoknot by 1 or 2 nucleotides (nt). Shortening of the spacer is likely to re-establish tension and/or ribosomal contacts that were otherwise lost with the smaller E. coli ribosomes. Chemical probing experiments for frameshifting and nonframeshifting BWYV constructs were performed to investigate the structural integrity of the pseudoknot confined locally at the mRNA entry site. These data, obtained in the pretranslocation state, show a compact overall pseudoknot structure, with changes in the conformation of nucleotides (i.e., increase in reactivity to chemical probes) that are first “hit” by the ribosomal helicase center. Interestingly, with the 1-nt shortened spacer, this increase of reactivity extends to a downstream nucleotide in the first base pair (bp) of stem 1, consistent with melting of this base pair. Thus, the 3 bp that will unfold upon translocation are different in both constructs with likely consequences on unfolding kinetics.  相似文献   

4.
Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA–ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.  相似文献   

5.
How does tmRNA move through the ribosome?   总被引:2,自引:0,他引:2  
To test the structure of tmRNA in solution, cross-linking experiments were performed which showed two sets of cross-links in two different domains of tmRNA. Site-directed mutagenesis was used to search for tmRNA nucleotide bases that might form a functional analogue of a codon-anticodon duplex to be recognized by the ribosomal A-site. We demonstrate that nucleotide residues U85 and A86 from tmRNA are significant for tmRNA function and propose that they are involved in formation of a tmRNA element playing a central role in A-site recognition. These data are discussed in the frame of a hypothetical model that suggests a general scheme for the interaction of tmRNA with the ribosome and explains how it moves through the ribosome.  相似文献   

6.
Li et al., (2006) have shown that TOR complex 1 in yeast binds directly to the rDNA promoter and thereby activates Pol I-dependent synthesis of 35S RNA. This is an important advance in the understanding of how ribosome biogenesis is regulated in response to environmental conditions.  相似文献   

7.
Ribosome subunit assembly in bacteria is assisted by several non‐ribosomal proteins, the absence of which leads to assembly defects. The two DEAD‐box RNA helicases SrmB and DeaD/CsdA are required for efficient assembly of the ribosome large subunit, in particular at low temperature, but their sites of action on rRNA were not known until now. In this issue of Molecular Microbiology, Proux et al. show that SrmB acts far away from its tethering site on the assembly intermediate particle. A genetic screen identified mutations in complementary sequences of 23S and 5S rRNA that help to bypass SrmB deficiency, partially correcting the large subunit assembly defect. The results suggest that 5S rRNA and 23S rRNA can interact via base‐pairing, forming a non‐native structure that needs to be corrected. The authors discuss attractive hypotheses on SrmB acts during large subunit assembly.  相似文献   

8.
The locations of the 3 ends of RNAs in rat ribosome were studied by a fluorescencelabeling method combined with high hydrostatic pressure and agarose electrophoresis. Under physiological conditions, only the 3 ends of 28 S and 5.8 S RNA in 80 S ribosome could be labeled with a high sensitive fluorescent probe – fluorescein 5thiosemicarbazide (FTSC), indicating that the 3 termini of 28 S and 5.8 S RNA were located on or near the surface of 80 S ribosome. The 3 terminus of 5 S RNA could be attacked by FTSC only in the case of the dissociation of the 80 S ribosome into two subunits induced by high salt concentration (1 M KCl) or at high hydrostatic pressure, showing that the 3 end of 5 S RNA was located on the interface of two subunits. However, no fluorescencelabeled 18 S RNA could be detected under all the conditions studied, suggesting that the 3 end of 18 S RNA was either located deeply inside ribosome or on the surface but protected by proteins. It was interesting to note that modifications of the 3 ends of ribosomal RNAs including oxidation with NaIO4, reduction with KBH4 and labeling with fluorescent probe did not destroy the translation activity of ribosome, indicating that the 3 ends of RNAs were not involved in the translation activity of ribosome.  相似文献   

9.
Atomic resolution crystal structures of the large subunit published since the middle of August 2000 prove that the peptidyl transferase center of the ribosome, which is the site of peptide-bond formation, is composed entirely of RNA; the ribosome is a ribozyme. They also demonstrate that alignment of the CCA ends of ribosome-bound peptidyl tRNA and aminoacyl tRNA in the peptidyl transferase center contributes significantly to its catalytic power. Several issues remain unresolved. For example, do any components of the site enhance the rate of peptide-bond formation chemically? Do intact ribosomes make peptide bonds the same way as the isolated large subunits that have been the source of all this atomic resolution structural information?  相似文献   

10.
A core model is presented for protein production in Escherichia coli to address the question whether there is an optimal ribosomal concentration for non-ribosome protein production. Analysing the steady-state solution of the model over a range of mRNA concentrations, indicates that such an optimum ribosomal content exists, and that the optimum shifts to higher ribosomal contents at higher specific growth rates.  相似文献   

11.
Structures of the ribosomal large and small subunits have been solved to atomic resolution by X-ray crystallography. These structures provide a new foundation to address the complex process of protein biosynthesis by the ribosome. Translocation of the tRNA-mRNA complex is one of the most fascinating tasks performed by the ribosome. The impact of the crystal structures in understanding the molecular mechanism of translocation is highlighted in this review.  相似文献   

12.
The influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo. Ribosomes have little effect on intron ribozyme activities; rather, the association with host ribosomes protects the intron RNA against degradation by RNase E, an enzyme previously shown to be a silencer of retromobility in Escherichia coli. The ribosome interacts strongly with the intron, exerting protective effects in vivo and in vitro, as demonstrated by genetic and biochemical experiments. These results are consistent with the ribosome influencing the integrity of catalytic RNAs in bacteria in the face of degradative nucleases that regulate intron mobility.  相似文献   

13.
The recent structures of the ribosome and the ribosomal subunits only heighten the intrigue of trying to understand how the ribosome is assembled. Biochemical and mechanistic studies have mapped out the basic series of protein binding events that occur, but we do not yet have a clear picture of the RNA conformational changes that must accompany the protein binding. Recent studies point to roles of protein folding chaperones and RNA helicases as facilitators of ribosome assembly, but the basic process of assembly seems to be encoded in the RNA sequences and can occur for the most part spontaneously in vitro, and quite possibly in vivo as well.  相似文献   

14.
15.
The translocation of tRNA coupled with mRNA in the ribosome is one of important steps during protein synthesis. Despite extensive experimental studies, the detailed mechanism of the translocation remains undetermined. Here, based on previous biochemical, cryo-electron microscopic and X-ray crystallographic studies, a thermal ratchet model is presented for this translocation. In the model, during one elongation cycle of the protein synthesis, two large conformational transitions of the ribosome are involved, with one being the relative rotation between the two ribosomal subunits following the peptide transfer, which is facilitated by the EF-G.GTP binding, and the other one being the reverse relative rotation between the two ribosomal subunits upon EF-G.GTP hydrolysis. The former conformational change plays an important role in ensuring the completion of the release of the deacylated tRNA from the ribosome before tRNA–mRNA translocation. The latter reverse conformational change upon GTP hydrolysis is followed by rapid tRNA–mRNA translocation and Pi release, both of which take place independently of each other. This is consistent with the previous biochemical experimental data. Also, the model is consistent with other available experimental results such as the suppression of EF-G-dependent translocation in cross-linked ribosomes and frameshifting under some conditions.  相似文献   

16.
Although the initiation and elongation steps of protein synthesis have been extensively char-acterized in Escherichia coli (E. coli), the translation termination is still less well understood. However, recent experiment result might have provided some hints for our deeper understanding of the termination mechanism. (i) Not only does the translation stop codon act as a signal for ter-mination, but also its context influences the translation termination[13]; (ii) the structure similar-ity betwee…  相似文献   

17.
18.
Although tRNA was the first substrate whose export from the nuclei of eukaryotic cells had been shown to be carrier-mediated and active, it has only been in the last 2 years that the first mechanistic details of this nucleocytoplasmic transport pathway have begun to emerge. A member of the importin/karyopherin beta superfamily, Los1p in yeast and Xpo-t in vertebrates, has been shown to export tRNA in cooperation with the small GTPase Ran (Gsp1p) from the nucleus into the cytoplasm, where tRNA becomes available for translation. However, Los1p is not essential for viability in yeast cells, suggesting that alternative tRNA export pathways exist. Recent results show that aminoacylation and a translation factor are also required for efficient nuclear tRNA export. Thus, protein translation and nuclear export of tRNA appear to be coupled processes.  相似文献   

19.
The assembly of eukaryotic ribosomes is a hierarchical process involving about 200 biogenesis factors and a series of remodeling steps. The 5S RNP consisting of the 5S rRNA, RpL5 and RpL11 is recruited at an early stage, but has to rearrange during maturation of the pre-60S ribosomal subunit. Rpf2 and Rrs1 have been implicated in 5S RNP biogenesis, but their precise role was unclear. Here, we present the crystal structure of the Rpf2–Rrs1 complex from Aspergillus nidulans at 1.5 Å resolution and describe it as Brix domain of Rpf2 completed by Rrs1 to form two anticodon-binding domains with functionally important tails. Fitting the X-ray structure into the cryo-EM density of a previously described pre-60S particle correlates with biochemical data. The heterodimer forms specific contacts with the 5S rRNA, RpL5 and the biogenesis factor Rsa4. The flexible protein tails of Rpf2–Rrs1 localize to the central protuberance. Two helices in the Rrs1 C-terminal tail occupy a strategic position to block the rotation of 25S rRNA and the 5S RNP. Our data provide a structural model for 5S RNP recruitment to the pre-60S particle and explain why removal of Rpf2–Rrs1 is necessary for rearrangements to drive 60S maturation.  相似文献   

20.
In neurons, specific mRNAs are transported in a translationally repressed manner along dendrites or axons by transport ribonucleic-protein complexes called RNA granules. ZBP1 is one RNA binding protein present in transport RNPs, where it transports and represses the translation of cotransported mRNAs, including β-actin mRNA. The release of β-actin mRNA from ZBP1 and its subsequent translation depends on the phosphorylation of ZBP1 by Src kinase, but little is known about how this process is regulated. Here we demonstrate that the ribosomal-associated protein RACK1, another substrate of Src, binds the β-actin mRNA/ZBP1 complex on ribosomes and contributes to the release of β-actin mRNA from ZBP1 and to its translation. We identify the Src binding and phosphorylation site Y246 on RACK1 as the critical site for the binding to the β-actin mRNA/ZBP1 complex. Based on these results we propose RACK1 as a ribosomal scaffold protein for specific mRNA-RBP complexes to tightly regulate the translation of specific mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号