首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic di-AMP (c-di-AMP) has been shown to play important roles as a second messenger in bacterial physiology and infections. However, understanding of how the signal is transduced is still limited. Previously, we have characterized a diadenylate cyclase and two c-di-AMP phosphodiesterases in Streptococcus pneumoniae, a Gram-positive pathogen. In this study, we identified a c-di-AMP binding protein (CabP) in S. pneumoniae using c-di-AMP affinity chromatography. We demonstrated that CabP specifically bound c-di-AMP and that this interaction could not be interrupted by competition with other nucleotides, including ATP, cAMP, AMP, phosphoadenylyl adenosine (pApA), and cyclic di-GMP (c-di-GMP). By using a bacterial two-hybrid system and genetic mutagenesis, we showed that CabP directly interacted with a potassium transporter (SPD_0076) and that both proteins were required for pneumococcal growth in media with low concentrations of potassium. Interestingly, the interaction between CabP and SPD_0076 and the efficiency of potassium uptake were impaired by elevated c-di-AMP in pneumococci. These results establish a direct c-di-AMP-mediated signaling pathway that regulates pneumococcal potassium uptake.  相似文献   

2.
P. aeruginosa and S. pneumoniae are major bacterial causes of corneal ulcers in industrialized and in developing countries. The current study examined host innate immune responses at the site of infection, and also expression of bacterial virulence factors in clinical isolates from patients in south India. Corneal ulcer material was obtained from 49 patients with confirmed P. aeruginosa and 27 patients with S. pneumoniae, and gene expression of Toll Like Receptors (TLR), cytokines and inflammasome proteins was measured by quantitative PCR. Expression of P. aeruginosa type III secretion exotoxins and S. pneumoniae pneumolysin was detected by western blot analysis. We found that neutrophils comprised >90% cells in corneal ulcers, and that there was elevated expression of TLR2, TLR4, TLR5 and TLR9, the NLRP3 and NLRC4 inflammasomes and the ASC adaptor molecule. IL-1α IL-1β and IFN-γ expression was also elevated; however, there was no significant difference in expression of any of these genes between corneal ulcers from P. aeruginosa and S. pneumoniae infected patients. We also show that 41/49 (84%) of P. aeruginosa clinical isolates expressed ExoS and ExoT, whereas 5/49 (10%) of isolates expressed ExoS, ExoT and ExoU with only 2/49 isolates expressing ExoT and ExoU. In contrast, all 27 S. pneumoniae clinical isolates produced pneumolysin. Taken together, these findings demonstrate that ExoS/T expressing P. aeruginosa and pneumolysin expressing S. pneumoniae predominate in bacterial keratitis. While P. aeruginosa strains expressing both ExoU and ExoS are usually rare, these strains actually outnumbered strains expressing only ExoU in the current study. Further, as neutrophils are the predominant cell type in these corneal ulcers, they are the likely source of cytokines and of the increased TLR and inflammasome expression.  相似文献   

3.
The cytochrome c maturation system influences the expression of virulence factors in Bacillus anthracis. B. anthracis carries two copies of the ccdA gene, encoding predicted thiol-disulfide oxidoreductases that contribute to cytochrome c maturation, while the closely related organism Bacillus subtilis carries only one copy of ccdA. To investigate the roles of the two ccdA gene copies in B. anthracis, strains were constructed without each ccdA gene, and one strain was constructed without both copies simultaneously. Loss of both ccdA genes results in a reduction of cytochrome c production, an increase in virulence factor expression, and a reduction in sporulation efficiency. Complementation and expression analyses indicate that ccdA2 encodes the primary CcdA in B. anthracis, active in all three pathways. While CcdA1 retains activity in cytochrome c maturation and virulence control, it has completely lost its activity in the sporulation pathway. In support of this finding, expression of ccdA1 is strongly reduced when cells are grown under sporulation-inducing conditions. When the activities of CcdA1 and CcdA2 were analyzed in B. subtilis, neither protein retained activity in cytochrome c maturation, but CcdA2 could still function in sporulation. These observations reveal the complexities of thiol-disulfide oxidoreductase function in pathways relevant to virulence and physiology.  相似文献   

4.
Holliday junctions (HJs) are physical links between homologous DNA molecules that arise as central intermediary structures during homologous recombination and repair in meiotic and somatic cells. It is necessary for these structures to be resolved to ensure correct chromosome segregation and other functions. In eukaryotes, including plants, homologs of a gene called XPG-like endonuclease1 (GEN1) have been identified that process HJs in a manner analogous to the HJ resolvases of phages, archaea, and bacteria. Here, we report that Arabidopsis (Arabidopsis thaliana), a eukaryotic organism, has two functional GEN1 homologs instead of one. Like all known eukaryotic resolvases, AtGEN1 and Arabidopsis single-strand DNA endonuclease1 both belong to class IV of the Rad2/XPG family of nucleases. Their resolvase activity shares the characteristics of the Escherichia coli radiation and UV sensitive C paradigm for resolvases, which involves resolving HJs by symmetrically oriented incisions in two opposing strands. This leads to ligatable products without the need for further processing. The observation that the sequence context influences the cleavage by the enzymes can be interpreted as a hint for the existence of sequence specificity. The two Arabidopsis paralogs differ in their preferred sequences. The precise cleavage positions observed for the resolution of mobile nicked HJs suggest that these cleavage positions are determined by both the substrate structure and the sequence context at the junction point.To counter the effects of endogenous and exogenous factors that threaten the genome integrity, efficient mechanisms have evolved to ensure the faithful transmission of genetic information (Tuteja et al., 2001). Double-strand breaks, induced by conditions such as ionizing radiation or replication fork (RF) stalling, are among the most deleterious lesions (Jackson and Bartek, 2009). To protect the genome from consequences of these lesions, the cells have ancient double-strand break repair mechanisms, including the homologous recombination (HR) pathway. The HR mechanism is also of great importance in the intentional genetic recombination during sexual reproduction. A key intermediate in HR is the so-called Holliday junction (HJ), a structure that was first suggested in the context of a gene conversion model in fungi (Holliday, 1964) and later shown to arise in somatic and meiotic cells (Szostak et al., 1983; Schwacha and Kleckner, 1995; Cromie et al., 2006; Bzymek et al., 2010).HJs are structures consisting of four DNA strands of two homologous DNA helices (e.g. homologous chromosomes or sister chromatids). They arise through invasion of one single strand from each of two helices into the other double strand. This results in two continuous strands (one per helix) and two strands that cross from one helix into the other. Schematics often depict the HJs with a parallel orientation of the helices, in which the crossing strands cross each other as was originally postulated (Holliday, 1964). However, HJs based on oligonucleotides have been shown to adopt an antiparallel conformation (for review, see Lilley, 2000). In this configuration, the junction resembles the letter H in a lateral view, and the crossing strands actually perform U turns. The crossing strands represent physical links between the two DNA strands involved. If a RF is restored by HR-mediated repair during mitosis, the resulting HJ usually involves the two sister chromatids of one chromosome (Li and Heyer, 2008). In meiosis, the physical links in the shape of HJs arise because of meiotic crossover between homologous chromosomes. In either case, these links must be resolved to ensure unperturbed cell survival.The importance of resolving the HJs for the survival of cells and organisms is highlighted by the phenotypes described for mutants defective for the known pathways of HJ resolution. One of these pathways is the resolution by canonical HJ resolvases, enzymes that cleave the two opposing strands of a HJ in perfectly symmetric positions relative to the junction point, which results in readily ligatable nicked duplex (nD) products (Svendsen and Harper, 2010). This property distinguishes the canonical HJ resolvases from the noncanonical resolvases (see below).The main resolvase of Escherichia coli is radiation and UV sensitive C (RuvC), which is part of the E. coli resolvasome (RuvABC complex; Otsuji et al., 1974; Sharples et al., 1990, 1999). In this complex, a HJ is sandwiched between two RuvA tetramers (Panyutin and Hsieh, 1994). Two RuvB complexes form ATP-dependent motors of branch migration, with two opposing helical arms of the junction threaded through their central openings. For the resolution of the HJ, one RuvA tetramer is replaced by a RuvC homodimer. This homodimer positions two active sites at the center of the junction that are poised to cleave the junction point if a preferred consensus sequence of the form 5′-(A/T)TT(G/C)-3′ is encountered. The requirement for this correct sequence is quite strict; even a single base change can lead to a drastic reduction of the cleavage efficiency (Shah et al., 1994). Isolated EcRuvC is also active in vitro and binds only HJ structures with high specificity. This binding is independent of the sequence context, but the cleavage depends on the specific sequence (Iwasaki et al., 1991; Benson and West, 1994; Dunderdale et al., 1994). The exact cleavage position has been determined to be either one nucleotide 3′ or 5′ from the junction or at the junction point (Bennett and West, 1996; Shida et al., 1996; Osman et al., 2009). The well-characterized EcRuvC is often referred to as a paradigm of canonical HJ resolution.Eukaryotes have evolved a more complex interplay of different HJ resolution pathways (Schwartz and Heyer, 2011; Zakharyevich et al., 2012). A defined complex, consisting of a recombination deficiency Q (RecQ) helicase (AtRECQ4A in Arabidopsis [Arabidopsis thaliana], Bloom syndrome protein in human, and Slow growth suppression1 (Sgs1) in yeast [Saccharomyces cerevisiae]), a type IA topoisomerase (DNA topoisomerase 3-alpha [TOP3A] in Arabidopsis, HsTOPOIIIα in human, and ScTop3 in yeast), and the structural protein RecQ-mediated genome instability1 (AtRMI1 in Arabidopsis, HsRMI1 in human, and ScRmi1 in yeast; RTR complex), mediates the so-called dissolution pathway. The crossing points of a double HJ are brought together by branch migration catalyzed by the helicase followed by decatenation catalyzed by the topoisomerase (Wu and Hickson, 2003; Hartung et al., 2007a, 2008; Mankouri and Hickson, 2007; Yang et al., 2010). In addition to the catalytic activities, a functional RTR complex also requires structural functions based on protein-protein interactions, for which RMI1 plays an essential role (Mullen et al., 2005; Chen and Brill, 2007; Bonnet et al., 2013; Schröpfer et al., 2014). Dissolution leads to noncross-over products and therefore, is a major mechanism in somatic yeast cells (Gangloff et al., 1994; Ira et al., 2003; Matos et al., 2011). In Arabidopsis, the loss of RTR component function leads to elevated rates of HR as well as sensitivity to UV light and methylmethane sulfonate (MMS; Bagherieh-Najjar et al., 2005; Hartung et al., 2007a; Bonnet et al., 2013). Mutants of AtRMI1 and AtTOP3A exhibit severe and unique meiotic phenotypes (Chelysheva et al., 2008; Hartung et al., 2008). This meiosis I arrest is dependent on HR, but the exact nature of the recombination intermediates that are involved remains unclear (Li et al., 2004; Hartung et al., 2007b; Knoll et al., 2014).Dissolution acts in parallel with a second pathway mediated by the structure-specific endonuclease MMS and UV-sensitive protein81 (MUS81) as shown by the fact that the additional mutation of ScSgs1/AtRECQ4A leads to synthetic lethality (Mullen et al., 2001; Hartung et al., 2006; Mannuss et al., 2010). Single mutants of MUS81 in yeast, human, Drosophila melanogaster, and Arabidopsis are sensitive to DNA-damaging agents that perturb RFs and show reduced HR after induction of double-strand breaks (Boddy et al., 2001; Hanada et al., 2006; Hartung et al., 2006). The MUS81 homologs form heterodimers with the noncatalytic subunit essential meiotic endonuclease1 (EME1; ScMms4 in S. cerevisiae). SpMus81-Eme1 was, to our knowledge, the first nuclear endonuclease reported to be capable of resolving HJs (Boddy et al., 2001). The Arabidopsis complexes can be formed with the two different subunits: AtEME1A or AtEME1B (Geuting et al., 2009). AtMUS81-EME1A/B, like the fission yeast ortholog, preferentially cleaves nicked Holliday junctions (nHJs) and 3′-flaps but also shows weaker activity on intact HJs in vitro (Boddy et al., 2001; Osman et al., 2003; Geuting et al., 2009; Schwartz and Heyer, 2011). MUS81 homologs are key players in meiotic cross-over generation (Osman et al., 2003; Berchowitz et al., 2007; Higgins et al., 2008). Although cross-over formation is solely dependent on SpMus81 in fission yeast, this function was shown to be shared with ScYen1 in budding yeast (Osman et al., 2003; Blanco et al., 2010; Ho et al., 2010; Tay and Wu, 2010). Tightly regulated by cell division cycle5-dependent hyperphosphorylation at the end of prophase I, the main activity of ScMus81-Mms4 is timed to coordinate with the formation of chiasmata and HJs that link the homologous chromosomes. This role in meiosis I is shown by the failure of chromosome segregation at the end of meiosis I in ScMus81 mutants (Matos et al., 2011). Interestingly, the chromosomes could be segregated at the end of meiosis II because of the presence of ScYen1. In contrast to canonical HJ resolvases, the hallmark of the MUS81-EME1 cleavage mechanism is the asymmetry of the second incision relative to either a first incision or a preexisting nick. This difference classifies MUS81-EME1 as a noncanonical resolvase. Its products need additional processing by gap-filling or flap-cleaving enzymes to allow religation (Boddy et al., 2001; Geuting et al., 2009).In very recent studies, HsMUS81-EME1 was found to constitute an essential canonical HJ resolvase with HsSLX1-SLX4 (SLX for synthetic lethal of unknown function), in which a first incision is made by HsSLX1-SLX4 followed by the enhanced action of the HsMUS81-EME1 subunits on the resulting nHJ (Garner et al., 2013; Wyatt et al., 2013). HsSLX1-SLX4 had previously been described as a canonical resolvase, albeit producing only a low level of symmetrically cut ligatable products (Fekairi et al., 2009).In addition to the mechanisms described above, an activity resembling that of EcRuvC had long been known to be present in mammalian cell-free extracts. In 2008, the group of Steven C. West succeeded in identifying, to their knowledge, the first nuclear proteins analogous to the EcRuvC paradigm: ScYen1 and Homo sapiens XPG-like endonuclease1 (HsGEN1; Ip et al., 2008). These proteins are members of the large and well-characterized Rad2/XPG family of nucleases. The Rad2/XPG family consists of the Xeroderma pigmentosum group G-complementing protein (XPG) endonucleases of the nucleotide excision repair (class I), the flap endonuclease1 (FEN1) replication-associated flap endonucleases (class II), the exodeoxyribonuclease1 (EXO1) exonucleases of recombination and repair (class III), and class IV (containing the [putative] eukaryotic HJ resolvases). This last class was introduced after the identification of the rice (Oryza sativa) single-strand DNA endonuclease1 (OsSEND-1) based on sequence homology. The class IV members show a domain composition homologous to FEN1 and EXO1, with no spacer region between their N-terminal XPG (XPG-N) and internal XPG (XPG-I) domains, whereas the primary structure of these domains is more similar to the sequence of the nuclease domain of XPG (Furukawa et al., 2003).Although all Rad2/XPG homologs share a common cleavage mechanism as observed for the typical 5′-flap substrate (Tsutakawa et al., 2011; Tsutakawa and Tainer, 2012), the striking evolutionary difference between classes I, II, and III on the one hand and the HJ resolvases (class IV) on the other hand is the ability of class IV members to form homodimers in vitro at their preferred substrate, the HJs (Rass et al., 2010). The homodimer configuration ensures the presence of two active sites positioned on the opposing strands of the HJ, which is necessary for resolution. The mode of eukaryotic HJ resolution is largely similar to the bacterial paradigm: (1) cleavage occurs one nucleotide in the 3′ direction of a static junction point (equivalent to the main cleavage site on 5′-flaps), (2) the incisions occur with almost perfect point symmetry, (3) the incisions result in readily ligatable nDs, and (4) certain sites within a migratable HJ core are preferred, providing evidence for a (yet to be determined) sequence specificity (Ip et al., 2008; Bailly et al., 2010; Rass et al., 2010; Yang et al., 2012).In the absence of MUS81-EME1/Mms4, the proteins HsGEN1, ScYen1, and CeGEN-1 have been shown to play a role in response to replication-associated perturbations, such as MMS- and UV-induced DNA damage (Bailly et al., 2010; Blanco et al., 2010; Tay and Wu, 2010; Gao et al., 2012; Muñoz-Galván et al., 2012). It is also likely that these proteins provide a backup mechanism in mitosis and meiosis, ensuring proper chromosome segregation after a failure of other mechanisms, including MUS81-EME1/Mms4 (Blanco et al., 2010; Matos et al., 2011).Although canonical HJ resolvases in animals and fungi are a current topic of great interest, very little is known about these proteins in plants. In rice, two members of the Rad2/XPG class IV have been described: OsSEND-1 (the founding member) and OsGEN-like (OsGEN-L). OsSEND-1 was shown to digest single-stranded circular DNA, and its expression is induced on MMS-induced genotoxic stress, whereas OsGEN-L is implicated in late spore development (Furukawa et al., 2003; Moritoh et al., 2005). Both studies (Furukawa et al., 2003; Moritoh et al., 2005) proposed putative homologs in other plants, and the gene locus At1g01880 of Arabidopsis, coding for the protein AtGEN1, is considered the ortholog of HsGEN1 and ScYen1 (Ip et al., 2008). However, currently, only OsGEN-L has been further investigated and described to possess in vitro properties similar to both Rad2/XPG nucleases and EcRuvC. This protein shows a well-defined 5′-flap activity as well as a poorly characterized ability, similar to that of EcRuvC, to resolve mobile HJs (Yang et al., 2012).Thus, of two members of Rad2/XPG class IV of plants, only one member has so far been analyzed with respect to a possible HJ resolvase activity. However, Arabidopsis expression data show that both proteins are expressed in plants and do not reveal marked differences (Laubinger et al., 2008). In this study, the goal was, therefore, to characterize the in vitro activities of not only AtGEN1 but also, AtSEND1, focusing on the idea that Arabidopsis and (seed) plants in general might encode not one but actually two HJ resolvases with functional homology to EcRuvC.  相似文献   

5.
Cyclic di-AMP has been recognized as a ubiquitous second messenger involved in the regulation of bacterial signal transduction. However, little is known about the control of its synthesis and its physiological role in bacteria. In this study, we report a novel mechanism of control of c-di-AMP synthesis and its effects on bacterial growth in Mycobacterium smegmatis. We identified a DisA homolog in M. smegmatis, MsDisA, as an enzyme involved in c-di-AMP synthesis. Furthermore, MsRadA, a RadA homolog in M. smegmatis was found to act as an antagonist of the MsDisA protein. MsRadA can physically interact with MsDisA and inhibit the c-di-AMP synthesis activity of MsDisA. Overexpression of MsdisA in M. smegmatis led to cell expansion and bacterial aggregation as well as loss of motility. However, co-expression of MsradA and MsdisA rescued these abnormal phenotypes. Furthermore, we show that the interaction between RadA and DisA and its role in inhibiting c-di-AMP synthesis may be conserved in bacteria. Our findings enhance our understanding of the control of c-di-AMP synthesis and its physiological roles in bacteria.  相似文献   

6.
Streptococcus pneumoniae DnaJ is recognized as a virulence factor whose role in pneumococcal virulence remains unclear. Here, we attempted to reveal the contribution of DnaJ in pneumococcal virulence from the identification of its interacting proteins using co-immunoprecipitation method. dnaJ was cloned into plasmid pAE03 generating pAE03-dnaJ-gfp which was used to transform S. pneumoniae D39 strain. Then anti-GFP coated beads were used to capture GFP-coupled proteins from the bacterial lysate. The resulting protein mixtures were subjected to SDS-PAGE and those differential bands were determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. We finally obtained nine proteins such as DnaK, Gap, Eno, SpxB using this method. Furthermore, to confirm the interaction between DnaJ and these candidates, bacterial two-hybrid system was employed to reveal, for example, the interaction between DnaJ and DnaK, Eno, SpxB. Further protein expression experiments suggested that DnaJ prevented denaturation of Eno and SpxB at high temperature. These results help to understand the role of DnaJ in the pathogenesis of S. pneumoniae.  相似文献   

7.
The effects of inactivation of the genes encoding penicillin-binding protein 1a (PBP1a), PBP1b, and PBP2a in Streptococcus pneumoniae were examined. Insertional mutants did not exhibit detectable changes in growth rate or morphology, although a pbp1a pbp1b double-disruption mutant grew more slowly than its parent did. Attempts to generate a pbp1a pbp2a double-disruption mutant failed. The pbp2a mutants, but not the other mutants, were more sensitive to moenomycin, a transglycosylase inhibitor. These observations suggest that individually the pbp1a, pbp1b, and pbp2a genes are dispensable but that either pbp1a or pbp2a is required for growth in vitro. These results also suggest that PBP2a is a functional transglycosylase in S. pneumoniae.  相似文献   

8.
Teichoic acid (TA), together with peptidoglycan (PG), represents a highly complex glycopolymer that ensures cell wall integrity and has several crucial physiological activities. Through an insertion-deletion mutation strategy, we show that ΔrafX mutants are impaired in cell wall covalently attached TA (WTA)-PG biosynthesis, as evidenced by their abnormal banding patterns and reduced amounts of WTA in comparison with wild-type strains. Site-directed mutagenesis revealed an essential role for external loop 4 and some highly conserved amino acid residues in the function of RafX protein. The rafX gene was highly conserved in closely related streptococcal species, suggesting an important physiological function in the lifestyle of streptococci. Moreover, a strain D39 ΔrafX mutant was impaired in bacterial growth, autolysis, bacterial division, and morphology. We observed that a strain R6 ΔrafX mutant was reduced in adhesion relative to the wild-type R6 strain, which was supported by an inhibition assay and a reduced amount of CbpA protein on the ΔrafX mutant bacterial cell surface, as shown by flow cytometric analysis. Finally, ΔrafX mutants were significantly attenuated in virulence in a murine sepsis model. Together, these findings suggest that RafX contributes to the biosynthesis of WTA, which is essential for full pneumococcal virulence.  相似文献   

9.
Streptococcus suis serotype 2 is an important zoonotic pathogen causing severe infections in pigs and humans. The pathogenesis of S. suis 2 infections, however, is still poorly understood. Spx proteins are a group of global regulators involved in stress tolerance and virulence. In this study, we characterized two orthologs of the Spx regulator, SpxA1 and SpxA2 in S. suis 2. Two mutant strains (ΔspxA1 and ΔspxA2) lacking the spx genes were constructed. The ΔspxA1 and ΔspxA2 mutants displayed different phenotypes. ΔspxA1 exhibited impaired growth in the presence of hydrogen peroxide, while ΔspxA2 exhibited impaired growth in the presence of SDS and NaCl. Both mutants were defective in medium lacking newborn bovine serum. Using a murine infection model, we demonstrated that the abilities of the mutant strains to colonize the tissues were significantly reduced compared to that of the wild-type strain. The mutant strains also showed a decreased level of survival in pig blood. Microarray analysis revealed a global regulatory role for SpxA1 and SpxA2. Furthermore, we demonstrated for the first time that Spx is involved in triggering the host inflammatory response. Collectively, our data suggest that SpxA1 and SpxA2 are global regulators that are implicated in stress tolerance and virulence in S. suis 2.  相似文献   

10.
A key virulence strategy of bacterial pathogens is the delivery of multiple pathogen effector proteins into host cells during infection. The Hrp outer protein Q (HopQ1) effector from Pseudomonas syringae pv tomato (Pto) strain DC3000 is conserved across multiple bacterial plant pathogens. Here, we investigated the virulence function and host targets of HopQ1 in tomato (Solanum lycopersicum). Transgenic tomato lines expressing dexamethasone-inducible HopQ1 exhibited enhanced disease susceptibility to virulent Pto DC3000, the Pto ΔhrcC mutant, and decreased expression of a pathogen-associated molecular pattern-triggered marker gene after bacterial inoculation. HopQ1-interacting proteins were coimmunoprecipitated and identified by mass spectrometry. HopQ1 can associate with multiple tomato 14-3-3 proteins, including TFT1 and TFT5. HopQ1 is phosphorylated in tomato, and four phosphorylated peptides were identified by mass spectrometry. HopQ1 possesses a conserved mode I 14-3-3 binding motif whose serine-51 residue is phosphorylated in tomato and regulates its association with TFT1 and TFT5. Confocal microscopy and fractionation reveal that HopQ1 exhibits nucleocytoplasmic localization, while HopQ1 dephosphorylation mimics exhibit more pronounced nuclear localization. HopQ1 delivered from Pto DC3000 was found to promote bacterial virulence in the tomato genotype Rio Grande 76R. However, the HopQ1(S51A) mutant delivered from Pto DC3000 was unable to promote pathogen virulence. Taken together, our data demonstrate that HopQ1 enhances bacterial virulence and associates with tomato 14-3-3 proteins in a phosphorylation-dependent manner that influences HopQ1’s subcellular localization and virulence-promoting activities in planta.The ability to detect and mount a defense response against pathogenic microbes is vital for plant survival. Plants rely on both passive and active defenses to ward off microbial pathogens. Physical barriers, such as the cell wall and cuticle, as well as chemical barriers provide a first line of defense against microbial colonization. Unlike animals, plants do not possess a circulating immune system and rely on innate immunity for active defenses against microbial pathogens (Spoel and Dong, 2012). Plants use surface-localized receptors to recognize conserved pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin, resulting in pattern-triggered immunity (PTI; Zipfel et al., 2006). Plants also use primarily intracellular nucleotide-binding domain, Leu-rich repeat containing (NLR) immune receptors to recognize pathogen effectors delivered into host cells during infection (Spoel and Dong, 2012). NLR activation results in effector-triggered immunity (ETI). A signature of ETI is the hypersensitive response (HR), a form of programmed cell death occurring at the site of infection.In order to cause disease and suppress host defense responses, gram-negative bacterial pathogens deliver effector proteins into host cells via the type III secretion system (TTSS). Plant pathogenic bacteria deliver a large number (20–40) of effectors into host cells during infection (Cui et al., 2009). Collectively, effectors are required for bacterial virulence (Lindgren et al., 1986). However, knockouts affecting individual effectors frequently have phenotypes that are subtle, likely due to functional redundancy (Cunnac et al., 2011). Alternatively, individual effectors may play an important role in bacterial survival under conditions that are not typically analyzed in the laboratory or act cooperatively with one another. Progress in understanding individual effectors’ contributions to virulence has been made by generating transgenic plants that express effectors. Multiple effectors have been shown to suppress plant innate immunity and promote bacterial growth when either transiently or stably expressed in plants (Jamir et al., 2004; Guo et al., 2009). Effector expression can also result in avirulent phenotypes when a plant NLR receptor recognizes a cognate effector and mounts an HR. Such an HR phenotype can be used to dissect important effector domains required for plant recognition and enzymatic activity.Elucidating effector targets and enzymatic activity is necessary in order to understand how they act to subvert plant immune responses and can provide elegant insight into biological processes. Significant progress has been made in elucidating the enzymatic activity of a subset of effectors. Some of the most well-characterized effectors come from Pseudomonas syringae pv tomato (Pto), the causal agent of bacterial speck on tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). Multiple effectors can suppress immune responses by directly targeting PAMP receptors (AvrPto and AvrPtoB) or by interfering with downstream signaling processes (AvrB, AvrPphB, and HopAI1; Cui et al., 2009, 2010). The HopU1 effector interferes with RNA metabolism (Fu et al., 2007), and the HopI1 effector targets heat-shock proteins in the plant chloroplast (Jelenska et al., 2010).14-3-3s are conserved eukaryotic proteins that bind a diverse set of phosphorylated client proteins, typically at one of three distinct 14-3-3 binding motifs (Bridges and Moorhead, 2005). There are common recognition motifs for 14-3-3 proteins that contain phosphorylated Ser or Thr residues, but binding to nonphosphorylated ligands and to proteins lacking consensus motifs has been reported (Henriksson et al., 2002; Smith et al., 2011). The 14-3-3 mode I consensus motif is RXXpS/pTX and that of mode II is RXXXpS/pTXP, where X can be any amino acid and p indicates the site of phosphorylation (Smith et al., 2011). 14-3-3 proteins can also bind to the extreme C termini of proteins at the RXXpS/pTX-COOH mode III consensus motif (Smith et al., 2011). Interaction with 14-3-3s can regulate protein activity by influencing client subcellular localization, structure, and protein-protein interactions (Bridges and Moorhead, 2005). Recently, the Xanthomonas campestris XopN effector was shown to target tomato 14-3-3 isoforms, which facilitates its interaction with the tomato atypical receptor kinase1 and suppresses PTI (Kim et al., 2009; Taylor et al., 2012). Other 14-3-3s have also been shown to play a role during plant defense responses. The tomato TFT7 14-3-3 interacts with multiple mitogen-activated protein kinases to positively regulate HR induced by ETI (Oh and Martin, 2011). The Arabidopsis 14-3-3 isoform λ interacts with the RPW8.2 powdery mildew receptor and is required for complete RPW8.2-mediated resistance (Yang et al., 2009).In this study, we investigated the function of the Pto HopQ1 (for Hrp outer protein Q [also known as HopQ1-1]) effector in tomato. HopQ1 is an active effector that is transcribed and translocated via the TTSS (Schechter et al., 2004). HopQ1 induces cell death when expressed in Nicotiana benthamiana and therefore contributes to differences in host range in P. syringae pathovars on Nicotiana spp. (Wei et al., 2007; Ferrante et al., 2009). HopQ1 was also reported to slightly enhance disease symptoms (approximately 0.2 log) and bacterial virulence on bean (Phaseolus vulgaris) when expressed from P. syringae pv tabaci (Ferrante et al., 2009). Here, we generated transgenic tomato plants expressing HopQ1 that exhibited enhanced susceptibility to virulent Pto as well as the Pto ΔhrcC mutant. HopQ1-interacting proteins were identified from tomato using coimmunoprecipitations coupled with mass spectrometry. Multiple 14-3-3 proteins were identified. HopQ1 possesses a 14-3-3 binding motif whose Ser residue is phosphorylated in planta and affects its association with the tomato 14-3-3s TFT1 and TFT5. Mutation of HopQ1’s 14-3-3 binding motif affected its ability to promote bacterial virulence. Taken together, these results indicate that phosphorylation and subsequent interaction with tomato 14-3-3 proteins affect HopQ1’s virulence-promoting activities and subcellular localization.  相似文献   

11.
12.
Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.  相似文献   

13.
14.
15.
16.
17.
Verticillium dahliae infection leads to Verticillium wilt in cotton and other dicotyledon crops. To reduce the loss of economic crops, more attention has been focused on the key genes involved in pathogenicity of this soil‐borne plant fungal pathogen. Sho1 encodes a conserved tetraspan transmembrane protein which is a key element of the two upstream branches of the HOG‐MAPK pathway in fungi. Sho1 is required for full virulence in a wide variety of pathogenic fungi. In this study, sho1 mutant in V. dahliae (designated ΔVdsho1) was generated by Agrobacterium tumefaciens‐mediated transformation. ΔVdsho1 strain was highly sensitive to menadione (at concentration of 120 μm ) and hydrogen peroxide (at concentration of 250 μm ), displayed delayed spore germination and reduced spore production compared with the wild type and the complemented strains. During infection of host cotton plants, ΔVdsho1 exhibited impaired ability of root attachment and invasive growth. Results from the present work suggest that VdSho1 controls external sensing, virulence and multiple growth‐related traits in V. dahliae and might serve as a potential target for control of Verticillium wilt.  相似文献   

18.
19.
20.
Natural genetic transformation in Streptococcus pneumoniae is controlled by a quorum-sensing system, which acts through the competence-stimulating peptide (CSP) for transient activation of genes required for competence. More than 100 genes have been identified as CSP regulated by use of DNA microarray analysis. One of the CSP-induced genes required for genetic competence is comW. As the expression of this gene depended on the regulator ComE, but not on the competence sigma factor ComX (sigma(X)), and as expression of several genes required for DNA processing was affected in a comW mutant, comW appears to be a new regulatory gene. Immunoblotting analysis showed that the amount of the sigma(X) protein is dependent on ComW, suggesting that ComW may be directly or indirectly involved in the accumulation of sigma(X). As sigma(X) is stabilized in clpP mutants, a comW mutation was introduced into the clpP background to ask whether the synthesis of sigma(X) depends on ComW. The clpP comW double mutant accumulated an amount of sigma(X) higher (threefold) than that seen in the wild type but was not transformable, suggesting that while comW is not needed for sigma(X) synthesis, it acts both in stabilization of sigma(X) and in its activation. Modification of ComW with a histidine tag at its C or N terminus revealed that both amino and carboxyl termini are important for increasing the stability of sigma(X), but only the N terminus is important for stimulating its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号