首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traveler''s dilemma (TD) is one of social dilemmas which has been well studied in the economics community, but it is attracted little attention in the physics community. The TD game is a two-person game. Each player can select an integer value between and () as a pure strategy. If both of them select the same value, the payoff to them will be that value. If the players select different values, say and (), then the payoff to the player who chooses the small value will be and the payoff to the other player will be . We term the player who selects a large value as the cooperator, and the one who chooses a small value as the defector. The reason is that if both of them select large values, it will result in a large total payoff. The Nash equilibrium of the TD game is to choose the smallest value . However, in previous behavioral studies, players in TD game typically select values that are much larger than , and the average selected value exhibits an inverse relationship with . To explain such anomalous behavior, in this paper, we study the evolution of cooperation in spatial traveler''s dilemma game where the players are located on a square lattice and each player plays TD games with his neighbors. Players in our model can adopt their neighbors'' strategies following two standard models of spatial game dynamics. Monte-Carlo simulation is applied to our model, and the results show that the cooperation level of the system, which is proportional to the average value of the strategies, decreases with increasing until is greater than the critical value where cooperation vanishes. Our findings indicate that spatial reciprocity promotes the evolution of cooperation in TD game and the spatial TD game model can interpret the anomalous behavior observed in previous behavioral experiments.  相似文献   

2.
We explore a new method for identifying leaders and followers, LF, in repeated games by analyzing an experimental, repeated (50 rounds) game where Row player shifts the payoff between small and large values–a type of “investor” and Column player determines who gets the payoff–a type of “manager”. We found that i) the Investor (Row) most often is a leading player and the manager (Column) a follower. The longer the Investor leads the game, the higher is both player’s payoff. Surprisingly however, it is always the Manager that achieves the largest payoff. ii) The game has an efficient cooperative strategy where the players alternate in receiving a high payoff, but the players never identify, or accept, that strategy. iii) Under the assumption that the information used by the players is closely associated with the leader- follower sequence, and that information is available before the player’s decisions are made, the players switched LF- strategy primarily as a function of information on the Investor’s investment and moves and secondly as a function of the Manager’s payoff.  相似文献   

3.
Zhang J  Zhang C  Chu T  Perc M 《PloS one》2011,6(7):e21787
We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the prisoner's dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this study will be inspirational for future efforts aimed in this direction.  相似文献   

4.
General models of the evolution of cooperation, altruism and other social behaviours have focused almost entirely on single traits, whereas it is clear that social traits commonly interact. We develop a general kin-selection framework for the evolution of social behaviours in multiple dimensions. We show that whenever there are interactions among social traits new behaviours can emerge that are not predicted by one-dimensional analyses. For example, a prohibitively costly cooperative trait can ultimately be favoured owing to initial evolution in other (cheaper) social traits that in turn change the cost–benefit ratio of the original trait. To understand these behaviours, we use a two-dimensional stability criterion that can be viewed as an extension of Hamilton''s rule. Our principal example is the social dilemma posed by, first, the construction and, second, the exploitation of a shared public good. We find that, contrary to the separate one-dimensional analyses, evolutionary feedback between the two traits can cause an increase in the equilibrium level of selfish exploitation with increasing relatedness, while both social (production plus exploitation) and asocial (neither) strategies can be locally stable. Our results demonstrate the importance of emergent stability properties of multidimensional social dilemmas, as one-dimensional stability in all component dimensions can conceal multidimensional instability.  相似文献   

5.
Classical replicator dynamics assumes that individuals play their games and adopt new strategies on a global level: Each player interacts with a representative sample of the population and if a strategy yields a payoff above the average, then it is expected to spread. In this article, we connect evolutionary models for infinite and finite populations: While the population itself is infinite, interactions and reproduction occurs in random groups of size N. Surprisingly, the resulting dynamics simplifies to the traditional replicator system with a slightly modified payoff matrix. The qualitative results, however, mirror the findings for finite populations, in which strategies are selected according to a probabilistic Moran process. In particular, we derive a one-third law that holds for any population size. In this way, we show that the deterministic replicator equation in an infinite population can be used to study the Moran process in a finite population and vice versa. We apply the results to three examples to shed light on the evolution of cooperation in the iterated prisoner’s dilemma, on risk aversion in coordination games and on the maintenance of dominated strategies.  相似文献   

6.
Animal cooperation has puzzled biologists for a long time as its existence seems to contravene the basic notion of evolutionary biology that natural selection favours ‘selfish’ genes that promote only their own well-being. Evolutionary game theory has shown that cooperators can prosper in populations of selfish individuals if they occur in clusters, interacting more frequently with each other than with the selfish. Here we show that social networks of primates possess the necessary social structure to promote the emergence of cooperation. By simulating evolutionary dynamics of cooperative behaviour on interaction networks of 70 primate groups, we found that for most groups network reciprocity augmented the fixation probability for cooperation. The variation in the strength of this effect can be partly explained by the groups’ community modularity—a network measure for the groups’ heterogeneity. Thus, given selective update and partner choice mechanisms, network reciprocity has the potential to explain socially learned forms of cooperation in primate societies.  相似文献   

7.
As is well-known, spatial reciprocity plays an important role in facilitating the emergence of cooperative traits, and the effect of direct reciprocity is also obvious for explaining the cooperation dynamics. However, how the combination of these two scenarios influences cooperation is still unclear. In the present work, we study the evolution of cooperation in 2×2 games via considering both spatial structured populations and direct reciprocity driven by the strategy with 1-memory length. Our results show that cooperation can be significantly facilitated on the whole parameter plane. For prisoner''s dilemma game, cooperation dominates the system even at strong dilemma, where maximal social payoff is still realized. In this sense, R-reciprocity forms and it is robust to the extremely strong dilemma. Interestingly, when turning to chicken game, we find that ST-reciprocity is also guaranteed, through which social average payoff and cooperation is greatly enhanced. This reciprocity mechanism is supported by mean-field analysis and different interaction topologies. Thus, our study indicates that direct reciprocity in structured populations can be regarded as a more powerful factor for the sustainability of cooperation.  相似文献   

8.
In repeated interactions, players can use strategies that respond to the outcome of previous rounds. Much of the existing literature on direct reciprocity assumes that all competing individuals use the same strategy space. Here, we study both learning and evolutionary dynamics of players that differ in the strategy space they explore. We focus on the infinitely repeated donation game and compare three natural strategy spaces: memory-1 strategies, which consider the last moves of both players, reactive strategies, which respond to the last move of the co-player, and unconditional strategies. These three strategy spaces differ in the memory capacity that is needed. We compute the long term average payoff that is achieved in a pairwise learning process. We find that smaller strategy spaces can dominate larger ones. For weak selection, unconditional players dominate both reactive and memory-1 players. For intermediate selection, reactive players dominate memory-1 players. Only for strong selection and low cost-to-benefit ratio, memory-1 players dominate the others. We observe that the supergame between strategy spaces can be a social dilemma: maximum payoff is achieved if both players explore a larger strategy space, but smaller strategy spaces dominate.  相似文献   

9.
Understanding the mechanisms that can lead to the evolution of cooperation through natural selection is a core problem in biology. Among the various attempts at constructing a theory of cooperation, game theory has played a central role. Here, we review models of cooperation that are based on two simple games: the Prisoner's Dilemma, and the Snowdrift game. Both games are two‐person games with two strategies, to cooperate and to defect, and both games are social dilemmas. In social dilemmas, cooperation is prone to exploitation by defectors, and the average payoff in populations at evolutionary equilibrium is lower than it would be in populations consisting of only cooperators. The difference between the games is that cooperation is not maintained in the Prisoner's Dilemma, but persists in the Snowdrift game at an intermediate frequency. As a consequence, insights gained from studying extensions of the two games differ substantially. We review the most salient results obtained from extensions such as iteration, spatial structure, continuously variable cooperative investments, and multi‐person interactions. Bridging the gap between theoretical and empirical research is one of the main challenges for future studies of cooperation, and we conclude by pointing out a number of promising natural systems in which the theory can be tested experimentally.  相似文献   

10.
People often deviate from their individual Nash equilibrium strategy in game experiments based on the prisoner’s dilemma (PD) game and the public goods game (PGG), whereas conditional cooperation, or conformity, is supported by the data from these experiments. In a complicated environment with no obvious “dominant” strategy, conformists who choose the average strategy of the other players in their group could be able to avoid risk by guaranteeing their income will be close to the group average. In this paper, we study the repeated PD game and the repeated m-person PGG, where individuals’ strategies are restricted to the set of conforming strategies. We define a conforming strategy by two parameters, initial action in the game and the influence of the other players’ choices in the previous round. We are particularly interested in the tit-for-tat (TFT) strategy, which is the well-known conforming strategy in theoretical and empirical studies. In both the PD game and the PGG, TFT can prevent the invasion of non-cooperative strategy if the expected number of rounds exceeds a critical value. The stability analysis of adaptive dynamics shows that conformity in general promotes the evolution of cooperation, and that a regime of cooperation can be established in an AllD population through TFT-like strategies. These results provide insight into the emergence of cooperation in social dilemma games.  相似文献   

11.
We show that the history of play in a population game contains exploitable information that can be successfully used by sophisticated strategies to defeat memory-one opponents, including zero determinant strategies. The history allows a player to label opponents by their strategies, enabling a player to determine the population distribution and to act differentially based on the opponent’s strategy in each pairwise interaction. For the Prisoner’s Dilemma, these advantages lead to the natural formation of cooperative coalitions among similarly behaving players and eventually to unilateral defection against opposing player types. We show analytically and empirically that optimal play in population games depends strongly on the population distribution. For example, the optimal strategy for a minority player type against a resident TFT population is ALLC, while for a majority player type the optimal strategy versus TFT players is ALLD. Such behaviors are not accessible to memory-one strategies. Drawing inspiration from Sun Tzu’s the Art of War, we implemented a non-memory-one strategy for population games based on techniques from machine learning and statistical inference that can exploit the history of play in this manner. Via simulation we find that this strategy is essentially uninvadable and can successfully invade (significantly more likely than a neutral mutant) essentially all known memory-one strategies for the Prisoner’s Dilemma, including ALLC (always cooperate), ALLD (always defect), tit-for-tat (TFT), win-stay-lose-shift (WSLS), and zero determinant (ZD) strategies, including extortionate and generous strategies.  相似文献   

12.
Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.  相似文献   

13.
Various social contexts can be depicted as games of strategic interactions on networks, where an individual’s welfare depends on both her and her partners’ actions. Whereas much attention has been devoted to Bayes-Nash equilibria in such games, here we look at strategic interactions from an evolutionary perspective. To this end, we present the results of a numerical simulations program for these games, which allows us to find out whether Nash equilibria are accessible by adaptation of player strategies, and in general to identify the attractors of the evolution. Simulations allow us to go beyond a global characterization of the cooperativeness at equilibrium and probe into individual behavior. We find that when players imitate each other, evolution does not reach Nash equilibria and, worse, leads to very unfavorable states in terms of welfare. On the contrary, when players update their behavior rationally, they self-organize into a rich variety of Nash equilibria, where individual behavior and payoffs are shaped by the nature of the game, the social network’s structure and the players’ position within the network. Our results allow to assess the validity of mean-field approaches we use to describe the dynamics of these games. Interestingly, our dynamically-found equilibria generally do not coincide with (but show qualitatively the same features of) those resulting from theoretical predictions in the context of one-shot games under incomplete information.  相似文献   

14.
Common-pool resource (CPR) dilemmas distinguish themselves from general public good problems by encompassing both social and physical features. This paper examines how a physical mechanism, namely asymmetric payoff; and a social mechanism, reciprocity; simultaneously affect collective cooperation in theoretical water sharing interactions. We present an iterative N-person game theoretic model to investigate the joint effects of these two mechanisms in a linear fully connected river system under three information assumptions. From a simple evolutionary perspective, this paper quantitatively addresses the conditions for Nash Equilibrium in which collective cooperation might be established. The results suggest that direct reciprocity increases every actor’s motivation to contribute to the collective good of the river system. Meanwhile, various upstream and downstream actors manifest individual disparities as a result of the direct reciprocity and asymmetric payoff mechanisms. More specifically, the downstream actors are less willing to cooperate unless there is a high probability that long-term interactions are ensured; however, a greater level of asymmetries is likely to increase upstream actors’ incentives to cooperate even though the interactions could quickly end. The upstream actors also display weak sensitivity to an increase in the total number of actors, which generally results in a reduction in the other actors’ motivation for cooperation. It is also shown that the indirect reciprocity mechanism relaxes the overall conditions for cooperative Nash Equilibrium.  相似文献   

15.
Recently, the authors proposed a quantum prisoner’s dilemma game based on the spatial game of Nowak and May, and showed that the game can be played classically. By using this idea, we proposed three generalized prisoner’s dilemma (GPD, for short) games based on the weak Prisoner’s dilemma game, the full prisoner’s dilemma game and the normalized Prisoner’s dilemma game, written by GPDW, GPDF and GPDN respectively. Our games consist of two players, each of which has three strategies: cooperator (C), defector (D) and super cooperator (denoted by Q), and have a parameter γ to measure the entangled relationship between the two players. We found that our generalised prisoner’s dilemma games have new Nash equilibrium principles, that entanglement is the principle of emergence and convergence (i.e., guaranteed emergence) of super cooperation in evolutions of our generalised prisoner’s dilemma games on scale-free networks, that entanglement provides a threshold for a phase transition of super cooperation in evolutions of our generalised prisoner’s dilemma games on scale-free networks, that the role of heterogeneity of the scale-free networks in cooperations and super cooperations is very limited, and that well-defined structures of scale-free networks allow coexistence of cooperators and super cooperators in the evolutions of the weak version of our generalised prisoner’s dilemma games.  相似文献   

16.
Cooperation often comes with the temptation to defect and benefit at the cost of others. This tension between cooperation and defection is best captured in social dilemmas like the Prisoner's Dilemma. Adult humans have specific strategies to maintain cooperation during Prisoner's Dilemma interactions. Yet, little is known about the ontogenetic and phylogenetic origins of human decision-making strategies in conflict scenarios. To shed light on this question, we compared the strategies used by chimpanzees and 5-year old children to overcome a social dilemma. In our task, waiting for the partner to act first produced the best results for the subject. Alternatively, they could mutually cooperate and divide the rewards. Our findings indicate that the two species differed substantially in their strategies to solve the task. Chimpanzees became more strategic across the study period by waiting longer to act in the social dilemma. Children developed a more efficient strategy of taking turns to reciprocate their rewards. Moreover, children used specific types of communication to coordinate with their partners. These results suggest that while both species behaved strategically to overcome a conflict situation, only children engaged in active cooperation to solve a social dilemma.  相似文献   

17.
Evolutionary game theory provides an appropriate tool for investigating the competition and diffusion of behavioral traits in biological or social populations. A core challenge in evolutionary game theory is the strategy selection problem: Given two strategies, which one is favored by the population? Recent studies suggest that the answer depends not only on the payoff functions of strategies but also on the interaction structure of the population. Group interactions are one of the fundamental interactive modes within populations. This work aims to investigate the strategy selection problem in evolutionary game dynamics on group interaction networks. In detail, the strategy selection conditions are obtained for some typical networks with group interactions. Furthermore, the obtained conditions are applied to investigate selection between cooperation and defection in populations. The conditions for evolution of cooperation are derived for both the public goods game and volunteer’s dilemma game. Numerical experiments validate the above analytical results.  相似文献   

18.
Cooperation played a significant role in the self-organization and evolution of living organisms. Both network topology and the initial position of cooperators heavily affect the cooperation of social dilemma games. We developed a novel simulation program package, called ‘NetworGame’, which is able to simulate any type of social dilemma games on any model, or real world networks with any assignment of initial cooperation or defection strategies to network nodes. The ability of initially defecting single nodes to break overall cooperation was called as ‘game centrality’. The efficiency of this measure was verified on well-known social networks, and was extended to ‘protein games’, i.e. the simulation of cooperation between proteins, or their amino acids. Hubs and in particular, party hubs of yeast protein-protein interaction networks had a large influence to convert the cooperation of other nodes to defection. Simulations on methionyl-tRNA synthetase protein structure network indicated an increased influence of nodes belonging to intra-protein signaling pathways on breaking cooperation. The efficiency of single, initially defecting nodes to convert the cooperation of other nodes to defection in social dilemma games may be an important measure to predict the importance of nodes in the integration and regulation of complex systems. Game centrality may help to design more efficient interventions to cellular networks (in forms of drugs), to ecosystems and social networks.  相似文献   

19.
Cooperation is essential for successful human societies. Thus, understanding how cooperative and selfish behaviors spread from person to person is a topic of theoretical and practical importance. Previous laboratory experiments provide clear evidence of social contagion in the domain of cooperation, both in fixed networks and in randomly shuffled networks, but leave open the possibility of asymmetries in the spread of cooperative and selfish behaviors. Additionally, many real human interaction structures are dynamic: we often have control over whom we interact with. Dynamic networks may differ importantly in the goals and strategic considerations they promote, and thus the question of how cooperative and selfish behaviors spread in dynamic networks remains open. Here, we address these questions with data from a social dilemma laboratory experiment. We measure the contagion of both cooperative and selfish behavior over time across three different network structures that vary in the extent to which they afford individuals control over their network ties. We find that in relatively fixed networks, both cooperative and selfish behaviors are contagious. In contrast, in more dynamic networks, selfish behavior is contagious, but cooperative behavior is not: subjects are fairly likely to switch to cooperation regardless of the behavior of their neighbors. We hypothesize that this insensitivity to the behavior of neighbors in dynamic networks is the result of subjects’ desire to attract new cooperative partners: even if many of one’s current neighbors are defectors, it may still make sense to switch to cooperation. We further hypothesize that selfishness remains contagious in dynamic networks because of the well-documented willingness of cooperators to retaliate against selfishness, even when doing so is costly. These results shed light on the contagion of cooperative behavior in fixed and fluid networks, and have implications for influence-based interventions aiming at increasing cooperative behavior.  相似文献   

20.
The facial width-to-height ratio (fWHR) has been identified as a reliable predictor of men’s behavior, with researchers focusing on evolutionary selection pressures as the underlying mechanism explaining these relationships. In this paper, we complement this approach and examine the extent to which social processes also determine the extent to which men’s fWHR serves as a behavioral cue. Specifically, we propose that observers’ treatment of target men based on the targets’ fWHR subsequently affects behavior, leading the targets to behave in ways that are consistent with the observers’ expectations (i.e., a self-fulfilling prophecy). Results from four studies demonstrate that individuals behave more selfishly when interacting with men with greater fWHRs, and this selfish behavior, in turn, elicits selfish behavior in others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号