首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic (Tg) mice expressing both Syrian hamster (Ha) and mouse (Mo) prion protein (PrP) genes were used to probe the mechanism of scrapie prion replication. Four Tg lines expressing HaPrP exhibited distinct incubation times ranging from 48 to 277 days, which correlated inversely with HaPrP mRNA and HaPrPC. Bioassays of Tg brain extracts showed that the prion inoculum dictates which prions are synthesized de novo. Tg mice inoculated with Ha prions had approximately 10(9) ID50 units of Ha prions per gram of brain and less than 10 units of Mo prions. Conversely, Tg mice inoculated with Mo prions synthesized Mo prions but not Ha prions. Similarly, Tg mice inoculated with Ha prions exhibited neuropathologic changes characteristic of hamsters with scrapie, while Mo prions produced changes similar to those in non-Tg mice. Our results argue that species specificity of scrapie prions resides in the PrP sequence and prion synthesis is initiated by a species-specific interaction between PrPSc in the inoculum and homologous PrPC.  相似文献   

2.
《朊病毒》2013,7(1):52-61
Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ~17 L/day of saliva, and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of -0.5 to 1.7 log ID50 U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of -1.1 to -0.4 log ID50 U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID50 units for sheep and 7.0 log ID50 units for deer. These estimates are similar to 7.9 log ID50 units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission.  相似文献   

3.
Transgenic (Tg) mice expressing full-length bovine prion protein (BoPrP) serially propagate bovine spongiform encephalopathy (BSE) prions without posing a transmission barrier. These mice also posed no transmission barrier for Suffolk sheep scrapie prions, suggesting that cattle may be highly susceptible to some sheep scrapie strains. Tg(BoPrP) mice were also found to be susceptible to prions from humans with variant Creutzfeldt-Jakob disease (CJD); on second passage in Tg(BoPrP) mice, the incubation times shortened by 30 to 40 days. In contrast, Tg(BoPrP) mice were not susceptible to sporadic, familial, or iatrogenic CJD prions. While the conformational stabilities of bovine-derived and Tg(BoPrP)-passaged BSE prions were similar, the stability of sheep scrapie prions was higher than that found for the BSE prions but lower if the scrapie prions were passaged in Tg(BoPrP) mice. Our findings suggest that BSE prions did not arise from a sheep scrapie strain like the one described here; rather, BSE prions may have arisen spontaneously in a cow or by passage of a scrapie strain that maintains its stability upon passage in cattle. It may be possible to distinguish BSE prions from scrapie strains in sheep by combining conformational stability studies with studies using novel Tg mice expressing a chimeric mouse-BoPrP gene. Single-amino-acid substitutions in chimeric PrP transgenes produced profound changes in incubation times that allowed us to distinguish prions causing BSE from those causing scrapie.  相似文献   

4.
Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ∼17 L/day of saliva and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of −0.5 to 1.7 log ID50 U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of −1.1 to −0.4 log ID50 U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID50 units for sheep and 7.0 log ID50 units for deer. These estimates are similar to 7.9 log ID50 units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission.Key words: scrapie, chronic wasting disease, saliva, horizontal transmission, titers  相似文献   

5.
Expression of the cellular prion protein (PrP(C)) is crucial for susceptibility to prions. In vivo, ectopic expression of PrP(C) restores susceptibility to prions and transgenic mice that express heterologous PrP on a PrP knock-out background have been used extensively to study the role of PrP alterations for prion transmission and species barriers. Here we report that prion protein knock-out cells can be rendered permissive to scrapie infection by the ectopic expression of PrP. The system was used to study the influence of sheep PrP-specific residues in mouse PrP on the infection process with mouse adapted scrapie. These studies reveal several critical residues previously not associated with species barriers and demonstrate that amino acid residue alterations at positions known to have an impact on the susceptibility of sheep to sheep scrapie also drastically influence PrP(Sc) formation by mouse-adapted scrapie strain 22L. Furthermore, our data suggest that amino acid polymorphisms located on the outer surfaces of helix 2 and 3 drastically impact conversion efficiency. In conclusion, this system allows for the fast generation of mutant PrP(Sc) that is entirely composed of transgenic PrP and is, thus, ideally suited for testing if artificial PrP molecules can affect prion replication. Transmission of infectivity generated in HpL3-4 cells expressing altered PrP molecules to mice could also help to unravel the potential influence of mutant PrP(Sc) on host cell tropism and strain characteristics in vivo.  相似文献   

6.
A series of prion transmission experiments was performed in transgenic (Tg) mice expressing either wild-type, chimeric, or truncated prion protein (PrP) molecules. Following inoculation with Rocky Mountain Laboratory (RML) murine prions, scrapie incubation times for Tg(MoPrP)4053, Tg(MHM2)294/Prnp(0/0), and Tg(MoPrP, Delta23-88)9949/Prnp(0/0) mice were approximately 50, 120, and 160 days, respectively. Similar scrapie incubation times were obtained after inoculation of these lines of Tg mice with either MHM2(MHM2(RML)) or MoPrP(Delta23-88)(RML) prions, excluding the possibility that sequence-dependent transmission barriers could account for the observed differences. Tg(MHM2)294/Prnp(0/0) mice displayed prolonged scrapie incubation times with four different strains of murine prions. These data provide evidence that the N terminus of MoPrP and the chimeric region of MHM2 PrP (residues 108 through 111) both influence the inherent efficiency of prion propagation.  相似文献   

7.
Conversion of cellular prion protein (PrP(C)) into a pathological conformer (PrP(Sc)) is thought to be promoted by PrP(Sc) in a poorly understood process. Here, we report that in wild-type mice, the expression of PrP(C) rendered soluble and dimeric by fusion to immunoglobulin Fcgamma (PrP-Fc(2)) delays PrP(Sc) accumulation, agent replication, and onset of disease following inoculation with infective prions. In infected PrP-expressing brains, PrP-Fc(2) relocates to lipid rafts and associates with PrP(Sc) without acquiring protease resistance, indicating that PrP-Fc(2) resists conversion. Accordingly, mice expressing PrP-Fc(2) but lacking endogenous PrP(C) are resistant to scrapie, do not accumulate PrP-Fc(2)(Sc), and do not transmit disease to others. These results indicate that various PrP isoforms engage in a complex in vivo, whose distortion by PrP-Fc(2) affects prion propagation and scrapie pathogenesis. The unique properties of PrP-Fc(2) suggest that soluble PrP derivatives may represent a new class of prion replication antagonists.  相似文献   

8.
A redacted prion protein (PrP) of 106 amino acids with two large deletions was expressed in transgenic (Tg) mice deficient for wild-type (wt) PrP (Prnp0/0) and supported prion propagation. RML prions containing full-length PrP(Sc)produced disease in Tg(PrP106)Prnp0/0 mice after approximately 300 days, while transmission of RML106 prions containing PrP(Sc)106 created disease in Tg(PrP106) Prnp0/0 mice after only approximately 66 days on repeated passage. This artificial transmission barrier for the passage of RML prions was diminished by the coexpression of wt MoPrPc in Tg(PrP106)Prnp+/0 mice that developed scrapie in approximately 165 days, suggesting that wt MoPrP acts in trans to accelerate replication of RML106 prions. Purified PrP(Sc)106 was protease resistant, formed filaments, and was insoluble in nondenaturing detergents. The unique features of RML106 prions offer insights into the mechanism of prion replication, and the small size of PrP(Sc)106 should facilitate structural analysis.  相似文献   

9.
We produced transgenic mice expressing the sheep prion protein to obtain a sensitive model for sheep spongiform encephalopathies (scrapie). The complete open reading frame, with alanine, arginine, and glutamine at susceptibility codons 136, 154, and 171, respectively, was inserted downstream from the neuron-specific enolase promoter. A mouse line, Tg(OvPrP4), devoid of the murine PrP gene, was obtained by crossing with PrP knockout mice. Tg(OvPrP4) mice were shown to selectively express sheep PrP in their brains, as demonstrated in mRNA and protein analysis. We showed that these mice were susceptible to infection by sheep scrapie following intracerebral inoculation with two natural sheep scrapie isolates, as demonstrated not only by the occurrence of neurological signs but also by the presence of the spongiform changes and abnormal prion protein accumulation in their brains. Mean times to death of 238 and 290 days were observed with these isolates, but the clinical course of the disease was strikingly different in the two cases. One isolate led to a very early onset of neurological signs which could last for prolonged periods before death. Independently of the incubation periods, some of the mice inoculated with this isolate showed low or undetectable levels of PrPsc, as detected by both Western blotting and immunohistochemistry. The development of experimental scrapie in these mice following inoculation of the scrapie infectious agent further confirms that neuronal expression of the PrP open reading frame alone is sufficient to mediate susceptibility to spongiform encephalopathies. More importantly, these mice provide a new and promising tool for studying the infectious agents in sheep spongiform encephalopathies.  相似文献   

10.
Three transgenic mouse lines designated Tg 69, 71, and 81 were produced harboring a Syrian hamster (Ha) prion protein (PrP) gene; all expressed the cellular HaPrP isoform in their brains. Inoculation of Tg 81 mice or hamsters with Ha prions caused scrapie in integral of 75 days; nontransgenic control mice failed to develop scrapie after greater than 500 days. Tg 71 mice inoculated with Ha prions developed scrapie in integral of 170 days. Both Tg 71 and Tg 81 mice exhibited spongiform degeneration and reactive astrocytic gliosis, and they produced the scrapie HaPrP isoform in their brains. Tg 81 brains also showed HaPrP amyloid plaques characteristic of Ha scrapie and contained integral of 10(9) ID50 units of Ha prions based on Ha bioassays. Our findings argue that the PrP gene modulates scrapie susceptibility, incubation times, and neuropathology; furthermore, they demonstrate synthesis of infectious scrapie prions programmed by a recombinant DNA molecule.  相似文献   

11.
The cellular prion protein (PrPC) undergoes constitutive proteolytic cleavage between residues 111/112 to yield a soluble N-terminal fragment (N1) and a membrane-anchored C-terminal fragment (C1). The C1 fragment represents the major proteolytic fragment of PrPC in brain and several cell types. To explore the role of C1 in prion disease, we generated Tg(C1) transgenic mice expressing this fragment (PrP(Δ23-111)) in the presence and absence of endogenous PrP. In contrast to several other N-terminally deleted forms of PrP, the C1 fragment does not cause a spontaneous neurological disease in the absence of endogenous PrP. Tg(C1) mice inoculated with scrapie prions remain healthy and do not accumulate protease-resistant PrP, demonstrating that C1 is not a substrate for conversion to PrPSc (the disease-associated isoform). Interestingly, Tg(C1) mice co-expressing C1 along with wild-type PrP (either endogenous or encoded by a second transgene) become ill after scrapie inoculation, but with a dramatically delayed time course compared with mice lacking C1. In addition, accumulation of PrPSc was markedly slowed in these animals. Similar effects were produced by a shorter C-terminal fragment of PrP(Δ23-134). These results demonstrate that C1 acts as dominant-negative inhibitor of PrPSc formation and accumulation of neurotoxic forms of PrP. Thus, C1, a naturally occurring fragment of PrPC, might play a modulatory role during the course of prion diseases. In addition, enhancing production of C1, or exogenously administering this fragment, represents a potential therapeutic strategy for the treatment of prion diseases.  相似文献   

12.
The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.  相似文献   

13.
Considerable progress has been made deciphering the role of an abnormal isoform of the prion protein (PrP) in scrapie of animals and Gerstmann-Str?ussler syndrome (GSS) of humans. Some transgenic (Tg) mouse (Mo) lines that carry and express a Syrian hamster (Ha) PrP gene developed scrapie 75 d after inoculation with Ha prions; non-Tg mice failed to show symptoms after greater than 500 d. Brains of these infected Tg(HaPrP) mice featured protease-resistant HaPrPSc, amyloid plaques characteristic for Ha scrapie, and 10(9) ID50 units of Ha-specific prions upon bioassay. Studies on Syrian, Armenian, and Chinese hamsters suggest that the domain of the PrP molecule between codons 100 and 120 controls both the length of the incubation time and the deposition of PrP in amyloid plaques. Ataxic GSS in families shows genetic linkage to a mutation in the PrP gene, leading to the substitution of Leu for Pro at codon 102. Discovery of a point mutation in the Prp gene from humans with GSS established that GSS is unique among human diseases--it is both genetic and infectious. These results have revised thinking about sporadic Creutzfeldt-Jakob disease, suggesting it may arise from a somatic mutation. These findings combined with those from many other studies assert that PrPSc is a component of the transmissible particle, and the PrP amino acid sequence controls the neuropathology and species specificity of prion infectivity. The precise mechanism of PrPSc formation remains to be established. Attempts to demonstrate a scrapie-specific nucleic acid within highly purified preparations of prions have been unrewarding to date. Whether transmissible prions are composed only of PrPSc molecules or do they also contain a second component such as small polynucleotide remains uncertain.  相似文献   

14.
Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164), denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174) did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrPSc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600–750 days in Tg4053 mice, which exhibited sPrPSc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrPSc.  相似文献   

15.
Transmissible spongiform encephalopathies (TSEs) such as scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt-Jacob disease (CJD) and Gerstmann-Str?ussler-Scheinker syndrome (GSS) in humans, are caused by an infectious agent designated prion. The "protein only" hypothesis states that the prion consists partly or entirely of a conformational isoform of the normal host protein PrPc and that the abnormal conformer, when introduced into the organism, causes the conversion of PrPc into a likeness of itself. Since the proposal of the "protein only" hypothesis more than three decades ago, cloning of the PrP gene, studies on PrP knockout mice and on mice transgenic for mutant PrP genes allowed deep insights into prion biology. Reverse genetics on PrP knockout mice containing modified PrP transgenes was used to address a variety of problems: mapping PrP regions required for prion replication, studying PrP mutations affecting the species barrier, modeling familial forms of human prion disease, analysing the cell specificity of prion propagation and investigating the physiological role of PrP by structure-function studies. Many questions regarding the role of PrP in susceptibility to prions have been elucidated, however the physiological role of PrP and the pathological mechanisms of neurodegeneration in prion diseases are still elusive.  相似文献   

16.
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.  相似文献   

17.
Cell based models used for the study of prion diseases have traditionally employed mouse-adapted strains of sheep scrapie prions. To date, attempts to generate human prion propagation in cell culture have been unsuccessful. Rabbit kidney epithelial cells (RK13) are permissive to infection with prions from a variety of species upon expression of cognate PrP transgenes. We explored RK13 cells expressing human PrP for their utility as a cell line capable of sustaining infection with human prions. RK13 cells processed exogenously expressed human PrP similarly to exogenously expressed mouse PrP but were not permissive to infection when exposed to sporadic Creutzfeldt-Jakob disease prions. Transmission of the same sporadic Creutzfeldt Jakob disease prions to wild-type mice generated a strain of mouse-adapted human prions, which efficiently propagated in RK13 cells expressing mouse PrP, demonstrating these cells are permissive to infection by mouse-adapted human prions. Our observations underscore the likelihood that, in contrast to prions derived from non-human mammals, additional unidentified cofactors or subcellular environment are critical for the generation of human prions.  相似文献   

18.
Preclinical sheep with the highly scrapie-susceptible VRQ/VRQ PRNP genotype secrete prions from the oral cavity. In order to further understand the significance of orally available prions, buccal swabs were taken from sheep with a range of PRNP genotypes and analyzed by serial protein misfolding cyclic amplification (sPMCA). Prions were detected in buccal swabs from scrapie-exposed sheep of genotypes linked to high (VRQ/VRQ and ARQ/VRQ) and low (ARR/VRQ and AHQ/VRQ) lymphoreticular system involvement in scrapie pathogenesis. For both groups, the level of prion detection was significantly higher than that for scrapie-resistant ARR/ARR sheep which were kept in the same farm environment and acted as sentinel controls for prions derived from the environment which might contaminate the oral cavity. In addition, sheep with no exposure to the scrapie agent did not contain any measurable prions within the oral cavity. Furthermore, prions were detected in sheep over a wide age range representing various stages of preclinical disease. These data demonstrate that orally available scrapie prions may be a common feature in sheep incubating scrapie, regardless of the PRNP genotype and any associated high-level accumulation of PrP(Sc) within lymphoreticular tissues. PrP(Sc) was present in buccal swabs from a large proportion of sheep with PRNP genotypes associated with relatively low disease penetrance, indicating that subclinical scrapie infection is likely to be a common occurrence. The significance of positive sPMCA reactions was confirmed by the transmission of infectivity in buccal swab extracts to Tg338 mice, illustrating the likely importance of orally available prions in the horizontal transmission of scrapie.  相似文献   

19.
20.
Chronic wasting disease (CWD) is a fatal prion disease in deer and elk. Unique among the prion diseases, it is transmitted among captive and free-ranging animals. To facilitate studies of the biology of CWD prions, we generated five lines of transgenic (Tg) mice expressing prion protein (PrP) from Rocky Mountain elk (Cervus elaphus nelsoni), denoted Tg(ElkPrP), and two lines of Tg mice expressing PrP common to white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus), denoted Tg(DePrP). None of the Tg(ElkPrP) or Tg(DePrP) mice exhibited spontaneous neurologic dysfunction at more than 600 days of age. Brain samples from CWD-positive elk, white-tailed deer, and mule deer produced disease in Tg(ElkPrP) mice between 180 and 200 days after inoculation and in Tg(DePrP) mice between 300 and 400 days. One of eight cervid brain inocula transmitted disease to Tg(MoPrP)4053 mice overexpressing wild-type mouse PrP-A in approximately 540 days. Neuropathologic analysis revealed abundant PrP amyloid plaques in the brains of ill mice. Brain homogenates from symptomatic Tg(ElkPrP) mice produced disease in 120 to 190 days in Tg(ElkPrP) mice. In contrast to the Tg(ElkPrP) and Tg(DePrP) mice, Tg mice overexpressing human, bovine, or ovine PrP did not develop prion disease after inoculation with CWD prions from among nine different isolates after >500 days. These findings suggest that CWD prions from elk, mule deer, and white-tailed deer can be readily transmitted among these three cervid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号