首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently found evidence that STAT1 in esophageal squamous carcinoma (ESCC) cells exerts tumor suppressor function, and it regulates five key regulators of apoptosis or cell-cycle progression, including Bcl-2, Bcl-xL, survivin, cyclin D1 and p21. In this study, we confirmed these findings in four ESCC cell lines. Using immunohistochemistry, we also assessed the expression of these proteins in 62 primary tumors. The expression of these markers was heterogeneous, ranging 39 to 69% of the cohort. Significant correlation was found between STAT1 and three proteins (p21, Bcl-xL and survivin), whereas only a trend was identified for cyclin D1 and Bcl-2. We then correlated the expression of these proteins with several clinicopathologic parameters including lymph node metastasis, depth of invasion, clinical stage and overall survival. Significant correlations were found between Bcl-2 and deep invasion (p = 0.033), survivin and lymph node metastasis (p = 0.006), as well as cyclin D1 and clinical stage (p = 0.014). Patients with p21-positive tumors had a significantly longer survival compared to those with p21-negative tumors (p = 0.031). To conclude, our findings support the concept that STAT1 exerts its tumor suppressor effects in ESCC via modulating the expression of key regulators of apoptosis and cell-cycle progression.  相似文献   

2.

Purpose

Radiation therapy for invasive bladder cancer allows for organ preservation but toxicity and local control remain problematic. As such, improving efficacy of treatment requires radiosensitization of tumor cells. The aim of study is to investigate if the mammalian Target of Rapamycin (mTOR), a downstream kinase of the phosphatidylinositol 3-kinase (PI3K)/AKT survival pathway, may be a target for radiation sensitization.

Experimental Design

Clonogenic assays were performed using 6 bladder cancer cell lines (UM-UC3, UM-UC5, UM-UC6, KU7, 253J-BV, and 253-JP) in order to examine the effects of ionizing radiation (IR) alone and in combination with RAD001, an mTOR inhibitor. Cell cycle analysis was performed using flow cytometry. In vivo, athymic mice were subcutaneously injected with 2 bladder cancer cell lines. Treatment response with RAD001 (1.5 mg/kg, daily), fractionated IR (total 9Gy = 3Gy×3), and combination of RAD001 and IR was followed over 4 weeks. Tumor weight was measured at experimental endpoint.

Results

Clonogenic assays revealed that in all bladder cell lines tested, an additive effect was observed in the combined treatment when compared to either treatment alone. Our data indicates that this effect is due to arrest in both G1 and G2 phases of cell cycle when treatments are combined. Furthermore, our data show that this arrest is primarily regulated by changes in levels of cyclin D1, p27 and p21 following treatments. In vivo, a significant decrease in tumor weight was observed in the combined treatment compared to either treatment alone or control.

Conclusions

Altering cell cycle by inhibiting the mTOR signaling pathway in combination with radiation have favorable outcomes and is a promising therapeutic modality for bladder cancer.  相似文献   

3.

Background

Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8–10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis.

Methods

Aged (20–24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival.

Results

In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice.

Conclusions

Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.  相似文献   

4.

Background

There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation.

Methods and Results

B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body) to Co60 (γ) (single dose 0, 0.5, and 2 Gy) at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy) at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3–6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05) in a dose-dependent manner 3–6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05) after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008) relative to controls. Percent lesion area increased (p = 0.005) with age of animal, but not with radiation treatment.

Conclusions

Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE−/− mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.  相似文献   

5.

Background

Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut.

Methods and Findings

Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (±11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1α gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFα release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue.

Conclusions

In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.  相似文献   

6.
7.
8.
MiR-34a, a direct target of p53, has shown to exert potent anti-proliferative effects. It has also been found that miR-34a can be induced by irradiation in vitro and in vivo. However, the relationship between miR-34a and radio-sensitivity, and its potential diagnostic significance in radiation biology, remain unclear. This study found that differing responses to ionizing radiation (IR) of young and adult mice were related to miR-34a. First, we found that miR-34a could be induced in many organs by radiation of both young and adult mice. However, the level of miR-34a induced by young mice was much higher when compared to adult mice. Next, we found that miR-34a played a critical role in radio-sensitivity variations of different tissues by enhancing cell apoptosis and decreasing cell viability. We also found that the induction of miR-34a by radiation was in a p53 dependent manner and that one possible downstream target of miR-34a that lead to different radio-sensitivity was the anti-apoptosis molecular Bcl-2. However, over-expression of miR-34a and knockdown of Bcl-2 could significantly enhance the radio-sensitivity of different cells while inhibition of miR-34a could protect cells from radiation injury. Finally, we concluded that miR-34a could be stable in serum after IR and serve as a novel indicator of radiation injury. Taken together, this data strongly suggests that miR-34a may be a novel indicator, mediator and target of radiation injury, radio-sensitivity and radioprotection.  相似文献   

9.
B Cell Lymphoma-2 (Bcl-2) protein suppresses ionizing radiation-induced apoptosis in hemato-lymphoid system. To enhance the survival of irradiated cells, we have compared the effects and mechanism of Bcl-2 and its functional variants, D34A (caspase-3 resistant) and S70E (mimics phosphorylation on S70). Bcl-2 and its mutants were transfected into hematopoietic cell line and assessed for cell survival, clonogenicity and cell cycle perturbations upon exposure to ionizing radiation. The electrostatic potential of BH3 cleft of Bcl-2/mutants and their heterodimerization with Bcl-2 associated X protein (Bax) were computationally evaluated. Correspondingly, these results were verified by co-immunoprecipitation and western blotting. The mutants afford higher radioprotective effect than Bcl-2 in apoptotic and clonogenic assays at D0 (radiation dose at which 37 % cell survival was observed). The computational and functional analysis indicates that mutants have higher propensity to neutralize Bax protein by heterodimerization and have increased caspase-9 suppression capability, which is responsible for enhanced survival. This study implies potential of Bcl-2 mutants or their chemical/peptide mimics to elicit radioprotective effect in cells exposed to radiation.  相似文献   

10.
SIRT1 is a mammalian NAD+-dependent histone deacetylase implicated in metabolism, development, aging and tumorigenesis. Prior studies that examined the effect of enterocyte-specific overexpression and global deletion of SIRT1 on polyp formation in the intestines of APC+/min mice, a commonly used model for intestinal tumorigenesis, yielded conflicting results, supporting either tumor-suppressive or tumor-promoting roles for SIRT1, respectively. In order to resolve the controversy emerging from these prior in vivo studies, in the present report we examined the effect of SIRT1 deficiency confined to the intestines, avoiding the systemic perturbations such as growth retardation seen with global SIRT1 deletion. We crossed APC+/min mice with mice bearing enterocyte-specific inactivation of SIRT1 and examined polyp development in the progeny. We found that SIRT1-inactivation reduced total polyp surface (9.3 mm2 vs. 23.3 mm2, p = 0.01), average polyp size (0.24 mm2 vs. 0.51 mm2, p = 0.005) and the number of polyps >0.5 mm in diameter (14 vs. 23, p = 0.04), indicating that SIRT1 affects both the number and size of tumors. Additionally, tumors in SIRT1-deficient mice exhibited markedly increased numbers of cells undergoing apoptosis, suggesting that SIRT1 contributes to tumor growth by enabling survival of tumor cells. Our results indicate that SIRT1 acts as a tumor promoter in the APC+/min mouse model of intestinal tumorigenesis.  相似文献   

11.

Purpose/Objective(s)

To determine if intensity modulated radiation therapy (IMRT) in the post-operative setting for gastric cancer was associated with reduced toxicity compared to 3D conformal radiation therapy (3DCRT).

Materials/Methods

This retrospective study includes 24 patients with stage IB-IIIB gastric cancer consecutively treated from 2001–2010. All underwent surgery followed by adjuvant chemoradiation. Concurrent chemotherapy consisted of 5-FU/leucovorin (n = 21), epirubicin/cisplatin/5FU (n = 1), or none (n = 2). IMRT was utilized in 12 patients and 3DCRT in 12 patients. For both groups, the target volume included the tumor bed, anastomosis, gastric stump, and regional lymphatics.

Results

Median follow-up for the entire cohort was 19 months (range 0.4–8.5 years), and 49 months (0.5–8.5 years) in surviving patients. The 3DCRT group received a median dose of 45 Gy, and the IMRT group received a median dose of 50.4 Gy (p = 0.0004). For the entire cohort, 3-year overall survival (OS) was 40% and 3-year disease free survival (DFS) was 41%. OS and DFS did not differ significantly between the groups. Acute toxicity was similar. Between 3DCRT and IMRT groups, during radiotherapy, median weight lost (3.2 vs. 3.3 kg, respectively; p = 0.47) and median percent weight loss were similar (5.0% vs. 4.3%, respectively; p = 0.43). Acute grade 2 toxicity was experienced by 8 patients receiving 3DCRT and 11 receiving IMRT (p = 0.32); acute grade 3 toxicity occurred in 1 patient receiving 3DCRT and none receiving IMRT (p = 1.0). No patients in either cohort experienced late grade 3 toxicity, including renal or gastrointestinal toxicity. At last follow up, the median increase in creatinine was 0.1 mg/dL in the IMRT group and 0.1 mg/dL in the 3DCRT group (p = 0.78).

Conclusion

This study demonstrates that adjuvant chemoradiation for gastric cancer with IMRT to 50.4 Gy was well-tolerated and compared similarly in toxicity with 3DCRT to 45 Gy.  相似文献   

12.
Exposure of cells to ionizing radiation (IR) induces, not only, activation of multiple signaling pathways that play critical roles in cell fate determination, but also alteration of molecular pathways involved in cell death or survival. Recently, DNA methylation has been established as a critical epigenetic process involved in the regulation of gene expression in cancer cells, suggesting that DNA methylation inhibition may be an effective cancer treatment strategy. Because alterations of gene expression by DNA methylation have been considered to influence radioresponsiveness, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC), on radiosensitivity. In addition, we investigated the underlying cellular mechanisms of combination treatments of ionizing irradiation (IR) and 5-aza-dC in human colon cancer cells. Colon cancer cell lines were initially tested for radiation sensitivity by IR in vitro and were treated with two different doses of 5-aza-dC. Survival of these cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and clonogenic assays. The effects of 5-aza-dC along with irradiation on cell growth, cell cycle distribution, apoptosis, and apoptosis-related gene expression were examined. Combination irradiation treatment with 5-aza-dC significantly decreased growth activity compared with irradiation treatment alone or with 5-aza-dC treatment alone. The percentage of HCT116 cells in the sub-G1 phase and their apoptotic rate was increased when cells were treated with irradiation in combination with 5-aza-dC compared with either treatment alone. These observations were strongly supported by increased caspase activity, increased comet tails using comet assays, and increased protein levels of apoptosis-associated molecules (caspase 3/9, cleaved PARP). Our data demonstrated that 5-aza-dC enhanced radiosensitivity in colon cancer cells, and the combination effects of 5-aza-dC with radiation showed greater cellular effects than that of single treatment, suggesting that the combination of 5-aza-dC and radiation has the potential to become a clinical strategy for the treatment of cancer.  相似文献   

13.
Many published studies reflect the growing application of complementary and alternative medicine, particularly Chinese herbal medicine (CHM) use in combination with conventional cancer therapy for advanced non-small cell lung cancer (NSCLC), but its efficacy remains largely unexplored. The purpose of this study is to evaluate the efficacy of CHM combined with conventional chemotherapy (CT) in the treatment of advanced NSCLC. Publications in 11 electronic databases were extensively searched, and 24 trials were included for analysis. A sum of 2,109 patients was enrolled in these studies, at which 1,064 patients participated in CT combined CHM and 1,039 in CT (six patients dropped out and were not reported the group enrolled). Compared to using CT alone, CHM combined with CT significantly increase one-year survival rate (RR = 1.36, 95% CI = 1.15–1.60, p = 0.0003). Besides, the combined therapy significantly increased immediate tumor response (RR = 1.36, 95% CI = 1.19–1.56, p<1.0E−5) and improved Karnofsky performance score (KPS) (RR = 2.90, 95% CI = 1.62–5.18, p = 0.0003). Combined therapy remarkably reduced the nausea and vomiting at toxicity grade of III–IV (RR = 0.24, 95% CI = 0.12–0.50, p = 0.0001) and prevented the decline of hemoglobin and platelet in patients under CT at toxicity grade of I–IV (RR = 0.64, 95% CI = 0.51–0.80, p<0.0001). Moreover, the herbs that are frequently used in NSCLC patients were identified. This systematic review suggests that CHM as an adjuvant therapy can reduce CT toxicity, prolong survival rate, enhance immediate tumor response, and improve KPS in advanced NSCLC patients. However, due to the lack of large-scale randomized clinical trials in the included studies, further larger scale trials are needed.  相似文献   

14.
Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia.  相似文献   

15.
We noted anecdotally that infections designated as health care-associated (HA-) MRSA by epidemiologic criteria seemed to be decreasing in incidence at the University of Chicago Medical Center (UCMC) after 2004. We compared MRSA patients seen at any site of clinical care at UCMC and the isolates that caused their infections in 2004-5 (n = 545) with those in 2008 (n = 135). The percent of patients with MRSA infections cultured > 2 days after hospital admission decreased from 19.5% in 2004-5 to 7.4% in 2008 (p = 0.001). The percent in 2004-5 compared with 2008 who had a hospitalization (49.1% to 26.7%, p = 0.001) or surgery (43.0% to 14.1%, p<0.001) in the previous year decreased. In 2008 a greater percent of patients was seen in the emergency department (23.1% vs. 39.3%) and a smaller percent both in intensive care units (15.6% vs. 6.7%) and in other inpatient units (40.7% vs. 32.6%) (p<0.001). The percent of patients with CA-MRSA infections by the CDC epidemiologic criteria increased from 36.5% in 2004-5 to 62.2% in 2008 (p<0.001). The percent of MRSA isolates sharing genetic characteristics of USA100 decreased from 27.9% (152/545) to 12.6% (17/135), while the percent with CA-MRSA (USA300) characteristics increased from 53.2% (290/545) to 66.7% (90/135). The percent of infections that were invasive did not change significantly. Our data suggest that HA-MRSA infections, both by epidemiologic and microbiologic criteria, relative to CA-MRSA, decreased between 2004-5 and 2008 at UCMC.  相似文献   

16.
ABSTRACT: BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is the 5th most common cancer worldwide. Locally advanced HNSCC are treated with either radiation or chemo-radiotherapy, but still associated with high mortality rate, underscoring the need to develop novel therapies. Oncolytic viruses have been garnering increasing interest as anti-cancer agents due to their preferential killing of transformed cells. In this study, we evaluated the therapeutic potential of mutant vesicular stomatitis virus (VSVdelta51) against the human hypopharyngeal FaDu tumour model in vitro and in vivo. METHODS: MTS assay was utilized to assess cell viability. Flow cytometry and Caspase 3/7 activation was utilized to assess apoptosis. In vivo studies were conducted using CD-1 nude mice. Fluorescence microscopy was utilized to assess viral replication in vitro and in vivo. RESULTS: Our data demonstrated high toxicity of the virus against FaDu cells in vitro, which was associated with induction of apoptosis. In vivo, systemic injection of 1x109 pfu had minimal effect on tumour growth; however, when combined with two doses of ionizing radiation (IR; 5 Gy each) or a single injection of the vascular disrupting agent (ZD6216), the virus exhibited profound suppression of tumour growth, which translated to a prolonged survival in the treated mice. Concordantly, VSVdelta51 combined with ZD6216 led to a significant increase in viral replication in these tumours. CONCLUSIONS: Our data suggest that the combinations of VSVdelta51 with either IR or ZD6216 are potentially novel therapeutic opportunities for HNSCC.  相似文献   

17.
Dogs offer unique opportunities to study correlations between morphology and behavior because skull shapes and body shape are so diverse among breeds. Several studies have shown relationships between canine cephalic index (CI: the ratio of skull width to skull length) and neural architecture. Data on the CI of adult, show-quality dogs (six males and six females) were sourced in Australia along with existing data on the breeds'' height, bodyweight and related to data on 36 behavioral traits of companion dogs (n = 8,301) of various common breeds (n = 49) collected internationally using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ). Stepwise backward elimination regressions revealed that, across the breeds, 33 behavioral traits all but one of which are undesirable in companion animals correlated with either height alone (n = 14), bodyweight alone (n = 5), CI alone (n = 3), bodyweight-and-skull shape combined (n = 2), height-and-skull shape combined (n = 3) or height-and-bodyweight combined (n = 6). For example, breed average height showed strongly significant inverse relationships (p<0.001) with mounting persons or objects, touch sensitivity, urination when left alone, dog-directed fear, separation-related problems, non-social fear, defecation when left alone, owner-directed aggression, begging for food, urine marking and attachment/attention-seeking, while bodyweight showed strongly significant inverse relationships (p<0.001) with excitability and being reported as hyperactive. Apart from trainability, all regression coefficients with height were negative indicating that, across the breeds, behavior becomes more problematic as height decreases. Allogrooming increased strongly (p<0.001) with CI and inversely with height. CI alone showed a strong significant positive relationship with self-grooming (p<0.001) but a negative relationship with chasing (p = 0.020). The current study demonstrates how aspects of CI (and therefore brain shape), bodyweight and height co-vary with behavior. The biological basis for, and significance of, these associations remain to be determined.  相似文献   

18.
Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.  相似文献   

19.

Background

the bone marrow and the intestine are the major sites of ionizing radiation (IR)-induced injury. Our previous study demonstrated that CpG-oligodeoxynucleotide (ODN) treatment mitigated IR-induced bone marrow injury, but its effect on the intestine is not known. In this study, we sought to determine if CpG-ODN have protective effect on IR-induced intestine injury, and if so, to determine the mechanism of its effect.

Methods and Findings

Mice were treated with CpG-ODN after IR. The body weight and survival were daily monitored for 30 days consecutively after exposure. The number of surviving intestinal crypt was assessed by the microcolony survival assay. The number and the distribution of proliferating cell in crypt were evaluated by TUNEL assay and BrdU assay. The expression of Bcl-2, Bax and caspase-3 in crypt were analyzed by Immunohistochemistry assay. The findings showed that the treatment for irradiated mice with CpG-ODN diminished body weight loss, improved 30 days survival, enhanced intestinal crypts survival and maintained proliferating cell population and regeneration in crypt. The reason might involve that CpG-ODN up-regulated the expression of Bcl-2 protein and down-regulated the expression of Bax protein and caspase-3 protein.

Conclusion

CpG-ODN was effective in protection of IR-induced intestine injury by enhancing intestinal crypts survival and maintaining proliferating cell population and regeneration in crypt. The mechanism might be that CpG-ODN inhibits proliferating cell apoptosis through regulating the expression of apoptosis-related protein, such as Bax, Bcl-2 and caspase-3.  相似文献   

20.
Kim MR  Lee JY  Park MT  Chun YJ  Jang YJ  Kang CM  Kim HS  Cho CK  Lee YS  Jeong HY  Lee SJ 《FEBS letters》2001,505(1):179-184
Although the majority of cancer cells are killed by TRAIL (tumor necrosis factor-related apoptosis-inducing ligand treatment), certain types show resistance to it. Ionizing radiation also induces cell death in cancer cells and may share common intracellular pathways with TRAIL leading to apoptosis. In the present study, we examined whether ionizing radiation could overcome TRAIL resistance in the variant Jurkat clones. We first selected TRAIL-resistant or -sensitive Jurkat clones and examined cross-responsiveness of the clones between TRAIL and radiation. Treatment with gamma-radiation induced significant apoptosis in all the clones, indicating that there seemed to be no cross-resistance between TRAIL and radiation. Combined treatment of radiation with TRAIL synergistically enhanced killing of TRAIL-resistant cells, compared to TRAIL or radiation alone. Apoptosis induced by combined treatment of TRAIL and radiation in TRAIL-resistant cells was associated with cleavage of caspase-8 and the proapoptotic Bid protein, resulting in the activation of caspase-9 and caspase-3. No changes in the expressions of TRAIL receptors (DR4 and DR5) and Bcl-2 or Bax were found after treatment. The caspase inhibitor z-VAD-fmk completely counteracted the synergistic cell killing induced by combined treatment of TRAIL and gamma-radiation. These results demonstrated that ionizing radiation in combination with TRAIL could overcome resistance to TRAIL in TRAIL-resistant cells through TRAIL receptor-independent synergistic activation of the cascades of the caspase-8 pathway, suggesting a potential clinical application of combination treatment of TRAIL and ionizing radiation to TRAIL-resistant cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号