首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In mice, plasmacytoid dendritic cells (pDC) and natural killer (NK) cells both contribute to resistance to systemic infections with herpes viruses including mouse Cytomegalovirus (MCMV). pDCs are the major source of type I IFN (IFN-I) during MCMV infection. This response requires pDC-intrinsic MyD88-dependent signaling by Toll-Like Receptors 7 and 9. Provided that they express appropriate recognition receptors such as Ly49H, NK cells can directly sense and kill MCMV-infected cells. The loss of any one of these responses increases susceptibility to infection. However, the relative importance of these antiviral immune responses and how they are related remain unclear. In humans, while IFN-I responses are essential, MyD88 is dispensable for antiviral immunity. Hence, a higher redundancy has been proposed in the mechanisms promoting protective immune responses against systemic infections by herpes viruses during natural infections in humans. It has been assumed, but not proven, that mice fail to mount protective MyD88-independent IFN-I responses. In humans, the mechanism that compensates MyD88 deficiency has not been elucidated. To address these issues, we compared resistance to MCMV infection and immune responses between mouse strains deficient for MyD88, the IFN-I receptor and/or Ly49H. We show that selective depletion of pDC or genetic deficiencies for MyD88 or TLR9 drastically decreased production of IFN-I, but not the protective antiviral responses. Moreover, MyD88, but not IFN-I receptor, deficiency could largely be compensated by Ly49H-mediated antiviral NK cell responses. Thus, contrary to the current dogma but consistent with the situation in humans, we conclude that, in mice, in our experimental settings, MyD88 is redundant for IFN-I responses and overall defense against a systemic herpes virus infection. Moreover, we identified direct NK cell sensing of infected cells as one mechanism able to compensate for MyD88 deficiency in mice. Similar mechanisms likely contribute to protect MyD88- or IRAK4-deficient patients from viral infections.  相似文献   

2.
Type I interferon (IFN-I) promotes antiviral CD8(+)T cell responses, but the contribution of different IFN-I sources and signaling pathways are ill defined. While plasmacytoid dendritic cells (pDCs) produce IFN-I upon TLR stimulation, IFN-I is induced in most cells by helicases like MDA5. Using acute and chronic lymphocytic choriomeningitis virus (LCMV) infection models, we determined that pDCs transiently produce IFN-I that minimally impacts CD8(+)T cell responses and viral persistence. Rather, MDA5 is the key sensor that induces IFN-I required for CD8(+)T cell responses. In the absence of MDA5, CD8(+)T cell responses to acute infection rely on CD4(+)T cell help, and loss of both CD4(+)T cells and MDA5 results in CD8(+)T cell exhaustion and persistent infection. Chronic LCMV infection rapidly attenuates IFN-I responses, but early administration of exogenous IFN-I rescues CD8(+)T cells, promoting viral clearance. Thus, effective antiviral CD8(+)T cell responses depend on the timing and magnitude of IFN-I production.  相似文献   

3.
Infant mortality from viral infection remains a major global health concern: viruses causing acute infections in immunologically mature hosts often follow a more severe course in early life, with prolonged or persistent viral replication. Similarly, the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) causes acute self-limiting infection in adult mice but follows a protracted course in infant animals, in which LCMV-specific CD8+ T cells fail to expand and control infection. By disrupting type I IFNs signaling in adult mice or providing IFN-α supplementation to infant mice, we show here that the impaired early life T cell responses and viral control result from limited early type I IFN responses. We postulated that plasmacytoid dendritic cells (pDC), which have been identified as one major source of immediate-early IFN-I, may not exert adult-like function in vivo in the early life microenvironment. We tested this hypothesis by studying pDC functions in vivo during LCMV infection and identified a coordinated downregulation of infant pDC maturation, activation and function: despite an adult-like in vitro activation capacity of infant pDCs, the expression of the E2-2 pDC master regulator (and of critical downstream antiviral genes such as MyD88, TLR7/TLR9, NF-κB, IRF7 and IRF8) is downregulated in vivo at baseline and during LCMV infection. A similar pattern was observed in response to ssRNA polyU, a model ligand of the TLR7 viral sensor. This suggests that the limited T cell-mediated defense against early life viral infections is largely attributable to / regulated by infant pDC responses and provides incentives for novel strategies to supplement or stimulate immediate-early IFN-α responses.  相似文献   

4.
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.  相似文献   

5.
During human immunodeficiency virus(HIV) infection, type I interferon(IFN-I) signaling induces an antiviral state that includes the production of restriction factors that inhibit virus replication, thereby limiting the infection. As seen in other viral infections, type I IFN can also increase systemic immune activation which, in HIV disease, is one of the strongest predictors of disease progression to acquired immune deficiency syndrome(AIDS) and non-AIDS morbidity and mortality.Moreover, IFN-I is associated with CD4 T cell depletion and attenuation of antigen-specific T cell responses. Therefore,therapeutic manipulation of IFN-I signaling to improve HIV disease outcome is a source of much interest and debate in thefield. Recent studies have highlighted the importance of timing(acute vs. chronic infection) and have suggested that specific targeting of type I IFNs and their subtypes may help harness the beneficial roles of the IFN-I system while avoiding its deleterious activities.  相似文献   

6.
Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.  相似文献   

7.
Plasmacytoid dendritic cells (pDCs) constitute a major source of type-I interferon (IFN-I) production during acute HIV infection. Their activation results primarily from TLR7-mediated sensing of HIV-infected cells. However, the interactions between HIV-infected T cells and pDCs that modulate this sensing process remain poorly understood. BST2/Tetherin is a restriction factor that inhibits HIV release by cross-linking virions onto infected cell surface. BST2 was also shown to engage the ILT7 pDC-specific inhibitory receptor and repress TLR7/9-mediated IFN-I production by activated pDCs. Here, we show that Vpu, the HIV-1 antagonist of BST2, suppresses TLR7-mediated IFN-I production by pDC through a mechanism that relies on the interaction of BST2 on HIV-producing cells with ILT7. Even though Vpu downregulates surface BST2 as a mean to counteract the restriction on HIV-1 release, we also find that the viral protein re-locates remaining BST2 molecules outside viral assembly sites where they are free to bind and activate ILT7 upon cell-to-cell contact. This study shows that through a targeted regulation of surface BST2, Vpu promotes HIV-1 release and limits pDC antiviral responses upon sensing of infected cells. This mechanism of innate immune evasion is likely to be important for an efficient early viral dissemination during acute infection.  相似文献   

8.
We investigated the negative effect of type I IFN (IFN-I) on the priming of specific CD8 T cell immunity. Priming of murine CD8 T cells is down-modulated if Ag is codelivered with IFN-I-inducing polyinosinic:polycytidylic acid (pI/C) that induces (NK cell- and T/B cell-independent) acute changes in the composition and surface phenotype of dendritic cells (DC). In wild-type but not IFN-I receptor-deficient mice, pI/C reduces the plasmacytoid DC but expands the CD8(+) conventional DC (cDC) population and up-regulates surface expression of activation-associated (CD69, BST2), MHC (class I/II), costimulator (CD40, CD80/CD86), and coinhibitor (PD-L1/L2) molecules by cDC. Naive T cells are efficiently primed in vitro by IFN-I-stimulated CD8 cDC (the key APC involved in CD8 T cell priming) although these DC produced less IL-12 p40 and IL-6. pI/C (IFN-I)-mediated down modulation of CD8 T cell priming in vivo was not observed in NKT cell-deficient CD1d(-/-) mice. CD8 cDC from pI/C-treated mice inefficiently stimulated IFN-gamma, IL-4, and IL-2 responses of NKT cells. In vitro, CD8 cDC that had activated NKT cells in the presence of IFN-I primed CD8 T cells that produced less IFN-gamma but more IL-10. The described immunosuppressive effect of IFN-I thus involves an NKT cell-mediated change in the phenotype of CD8 cDC that favors priming of IL-10-producing CD8 T cells. In the presence of IFN-I, NKT cells hence impair the competence of CD8 cDC to prime proinflammatory CD8 T cell responses.  相似文献   

9.
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.  相似文献   

10.
Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals.  相似文献   

11.
Molecularly defined vaccine formulations capable of inducing antiviral CD8+ T-cell-specific immunity in a manner compatible with human delivery are limited. Few molecules achieve this target without the support of an appropriate immunological adjuvant. In this study, we investigate the potential of totally synthetic palmitoyl-tailed helper-cytotoxic-T-lymphocyte chimeric epitopes (Th-CTL chimeric lipopeptides) to induce herpes simplex virus type 1 (HSV-1)-specific CD8+ T-cell responses. As a model antigen, the HSV-1 glycoprotein B498-505 (gB498-505) CD8+ CTL epitope was synthesized in line with the Pan DR peptide (PADRE), a universal CD4+ Th epitope. The peptide backbone, composed solely of both epitopes, was extended by N-terminal attachment of one (PAM-Th-CTL), two [(PAM)2-Th-CTL], or three [(PAM)3-Th-CTL] palmitoyl lysines and delivered to H2b mice in adjuvant-free saline. Potent HSV-1 gB498-505-specific antiviral CD8+ T-cell effector type 1 responses were induced by each of the palmitoyl-tailed Th-CTL chimeric epitopes, irrespective of the number of lipid moieties. The palmitoyl-tailed Th-CTL chimeric epitopes provoked cell surface expression of major histocompatibility complex and costimulatory molecules and production of interleukin-12 and tumor necrosis factor alpha proinflammatory cytokines by immature dendritic cells. Following ocular HSV-1 challenge, palmitoyl-tailed Th-CTL-immunized mice exhibited a decrease of virus replication in the eye and in the local trigeminal ganglion and reduced herpetic blepharitis and corneal scarring. The rational of the molecularly defined vaccine approach presented in this study may be applied to ocular herpes and other viral infections in humans, providing steps are taken to include appropriate Th and CTL epitopes and lipid groups.  相似文献   

12.
The blocking of programmed death ligand-1 (PDL-1) has been shown to enhance virus-specific CD8 T cell function during chronic viral infections. Though, how PDL-1 blocking at the time of priming affects the quality of CD8 T cell response to acute infections is not well understood and remains controversial. This report demonstrates that the magnitude of the primary and secondary CD8 T cell responses to herpes simplex virus-1 (HSV-1) infection is subject to control by PDL-1. Our results showed that after footpad HSV-1 infection, PD-1 expression increases on immunodominant SSIEFARL peptide specific CD8 T cells. Additionally, post-infection, the level of PDL-1 expression also increases on CD11c+ dendritic cells. Intraperitoneal administration of anti-PDL-1 monoclonal antibody given one day prior to and three days after cutaneous HSV-1 infection, resulted in a marked increase in effector and memory CD8 T cell response to SSIEFARL peptide. This was shown by measuring the quantity and quality of SSIEFARL-specific CD8 T cells by making use of ex-vivo assays that determine antigen specific CD8 T cell function, such as intracellular cytokine assay, degranulation assay to measure cytotoxicity and viral clearance. Our results are discussed in terms of the beneficial effects of blocking PDL-1 interactions, while giving prophylactic vaccines, to generate a more effective CD8 T cell response to viral infection.  相似文献   

13.
Neurotropic coronavirus infection induces expression of both beta interferon (IFN-beta) RNA and protein in the infected rodent central nervous system (CNS). However, the relative contributions of type I IFN (IFN-I) to direct, cell-type-specific virus control or CD8 T-cell-mediated effectors in the CNS are unclear. IFN-I receptor-deficient (IFNAR(-/-)) mice infected with a sublethal and demyelinating neurotropic virus variant and those infected with a nonpathogenic neurotropic virus variant both succumbed to infection within 9 days. Compared to wild-type (wt) mice, replication was prominently increased in all glial cell types and spread to neurons, demonstrating expanded cell tropism. Furthermore, increased pathogenesis was associated with significantly enhanced accumulation of neutrophils, tumor necrosis factor alpha, interleukin-6, chemokine (C-C motif) ligand 2, and IFN-gamma within the CNS. The absence of IFN-I signaling did not impair induction or recruitment of virus-specific CD8 T cells, the primary adaptive mediators of virus clearance in wt mice. Despite similar IFN-gamma-mediated major histocompatibility complex class II upregulation on microglia in infected IFNAR(-/-) mice, class I expression was reduced compared to that on microglia in wt mice, suggesting a synergistic role of IFN-I and IFN-gamma in optimizing class I antigen presentation. These data demonstrate a critical direct antiviral role of IFN-I in controlling virus dissemination within the CNS, even in the presence of potent cellular immune responses. By limiting early viral replication and tropism, IFN-I controls the balance of viral replication and immune control in favor of CD8 T-cell-mediated protective functions.  相似文献   

14.
After infection of epithelial surfaces, HSV-1 elicits a multifaceted antiviral response that controls the virus and limits it to latency in sensory ganglia. That response encompasses the CD8(+) T cells, whose precise role(s) is still being defined; immune surveillance in the ganglia and control of viral spread to the brain were proposed as the key roles. We tracked the kinetics of the CD8(+) T cell response across lymphoid and extralymphoid tissues after ocular infection. HSV-1-specific CD8(+) T cells first appeared in the draining (submandibular) lymph node on day 5 and were detectable in both nondraining lymphoid and extralymphoid tissues starting on day 6. However, although lymphoid organs contained both resting (CD43(low)CFSE(high)) and virus-specific cells at different stages of proliferation and activation, extralymphoid sites (eye, trigeminal ganglion, and brain) contained only activated cells that underwent more than eight proliferations (CD43(high)CFSE(neg)) and promptly secreted IFN-gamma upon contact with viral Ags. Regardless of the state of activation, these cells appeared too late to prevent HSV-1 spread, which was seen in the eye (from day 1), trigeminal ganglia (from day 2), and brain (from day 3) well before the onset of a detectable CD8(+) T cell response. However, CD8(+) T cells were critical in reducing viral replication starting on day 6 and for its abrogation between days 8 and 10; CD8-deficient animals failed to control the virus, exhibited persisting high viral titers in the brain after day 6, and died of viral encephalitis between days 7 and 12. Thus, CD8(+) T cells do not control HSV-1 spread from primary to tertiary tissues, but, rather, attack the virus in infected organs and control its replication in situ.  相似文献   

15.
The type I interferons (IFN-Is) are critical not only in early viral control but also in prolonged T-cell immune responses. However, chronic viral infections such as those of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in humans and lymphocytic choriomeningitis virus (LCMV) in mice overcome this early IFN-I barrier and induce viral persistence and exhaustion of T-cell function. Although various T-cell-intrinsic and -extrinsic factors are known to contribute to induction of chronic conditions, the roles of IFN-I negative regulators in chronic viral infections have been largely unexplored. Herein, we explored whether 2′–5′ oligoadenylate synthetase-like 1 (OASL1), a recently defined IFN-I negative regulator, plays a key role in the virus-specific T-cell response and viral defense against chronic LCMV. To this end, we infected Oasl1 knockout and wild-type mice with LCMV CL-13 (a chronic virus) and monitored T-cell responses, serum cytokine levels, and viral titers. LCMV CL-13-infected Oasl1 KO mice displayed a sustained level of serum IFN-I, which was primarily produced by splenic plasmacytoid dendritic cells, during the very early phase of infection (2–3 days post-infection). Oasl1 deficiency also led to the accelerated elimination of viremia and induction of a functional antiviral CD8 T-cell response, which critically depended on IFN-I receptor signaling. Together, these results demonstrate that OASL1-mediated negative regulation of IFN-I production at an early phase of infection permits viral persistence and suppresses T-cell function, suggesting that IFN-I negative regulators, including OASL1, could be exciting new targets for preventing chronic viral infection.  相似文献   

16.
CD4(+) T cells directly participate in bacterial clearance through secretion of proinflammatory cytokines. Although viral clearance relies heavily on CD8(+) T cell functions, we sought to determine whether human CD4(+) T cells could also directly influence viral clearance through cytokine secretion. We found that IFN-gamma and TNF-alpha, secreted by IL-12-polarized Th1 cells, displayed potent antiviral effects against a variety of viruses. IFN-gamma and TNF-alpha acted directly to inhibit hepatitis C virus replication in an in vitro replicon system, and neutralization of both cytokines was required to block the antiviral activity that was secreted by Th1 cells. IFN-gamma and TNF-alpha also exerted antiviral effects against vesicular stomatitis virus infection, but in this case, functional type I IFN receptor activity was required. Thus, in cases of vesicular stomatitis virus infection, the combination of IFN-gamma and TNF-alpha secreted by human Th1 cells acted indirectly through the IFN-alpha/beta receptor. These results highlight the importance of CD4(+) T cells in directly regulating antiviral responses through proinflammatory cytokines acting in both a direct and indirect manner.  相似文献   

17.
18.
Emerging studies indicate an association between virus-induced impairment in type I interferon (IFN-I) production and enhanced susceptibility to opportunistic infections, which represent a major health problem. Here, we provide in vivo evidence that lymphocytic choriomeningitis virus (LCMV) infection of its natural murine host dramatically diminishes the unique capacity of plasmacytoid dendritic cells (pDCs) to secrete high levels of systemic IFN-I. While both acute and persistent LCMV infections suppress pDC IFN-I response, only the persistent virus induces a long-lasting diversion of this innate immune pathway. The consequent reduction in IFN-I production serves to impair natural killer cell responses in LCMV-infected mice challenged subsequently with murine cytomegalovirus (MCMV) as an opportunistic pathogen. This innate defect also compromises the host's ability to counteract early MCMV spread. These findings provide a mechanistic explanation for the occurrence of opportunistic infections following viral insults and have important implications for treating such medical complications.  相似文献   

19.
Although many studies have investigated the requirement for CD4(+) T cell help for CD8(+) T cell responses to acute viral infections that are fully resolved, less is known about the role of CD4(+) T cells in maintaining ongoing CD8(+) T cell responses to persistently infecting viruses. Using mouse polyoma virus (PyV), we asked whether CD4(+) T cell help is required to maintain antiviral CD8(+) T cell and humoral responses during acute and persistent phases of infection. Though fully intact during acute infection, the PyV-specific CD8(+) T cell response declined numerically during persistent infection in MHC class II-deficient mice, leaving a small antiviral CD8(+) T cell population that was maintained long term. These unhelped PyV-specific CD8(+) T cells were functionally unimpaired; they retained the potential for robust expansion and cytokine production in response to Ag rechallenge. In addition, although a strong antiviral IgG response was initially elicited by MHC class II-deficient mice, these Ab titers fell, and long-lived PyV-specific Ab-secreting cells were not detected in the bone marrow. Finally, using a minimally myeloablative mixed bone marrow chimerism approach, we demonstrate that recruitment and/or maintenance of new virus-specific CD8(+) T cells during persistent infection is impaired in the absence of MHC class II-restricted T cells. In summary, these studies show that CD4(+) T cells differentially affect CD8(+) T cell responses over the course of a persistent virus infection.  相似文献   

20.
NKT cells are a minor subset of T cells that have important roles in controlling immune responses in disease states including cancer, autoimmunity and pathogenic infections. In contrast to conventional T cells, NKT cells express an invariant TCR and respond to glycolipids presented by CD1d. In this study, we sought to investigate the role of NKT cells in regulating the response to infection with HSV-1, and the mechanism involved, in well-established mouse models. Previous studies of HSV-1 disease in mice have shown clear roles for CD4+ and CD8+ T cells. The role of NKT cells in the resolution of HSV-1 (KOS strain) infection was investigated through flank zosteriform or footpad infection in wild-type versus CD1d-deficient mice, by measurement of viral plaque-forming units at different sites after infection, lesion severity and HSV-1-specific T-cell responses. In contrast to a previous study using a more virulent strain of HSV-1 (SC16 strain), no differences were observed in disease magnitude or resolution, and furthermore, the T-cell response to HSV-1 (KOS strain) was unaltered in the absence of NKT cells. In conclusion, this study shows that NKT cells do not play a general role in controlling the resolution or severity of HSV-1 infection. Instead, the resolution or severity of the infection may depend on the HSV-1 strain under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号