首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gram-negative bacterial plant pathogen Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject bacterial effector proteins into the host cell cytoplasm. One essential pathogenicity factor is HrpB2, which is secreted by the T3S system. We show that secretion of HrpB2 is suppressed by HpaC, which was previously identified as a T3S control protein. Since HpaC promotes secretion of translocon and effector proteins but inhibits secretion of HrpB2, HpaC presumably acts as a T3S substrate specificity switch protein. Protein-protein interaction studies revealed that HpaC interacts with HrpB2 and the C-terminal domain of HrcU, a conserved inner membrane component of the T3S system. However, no interaction was observed between HpaC and the full-length HrcU protein. Analysis of HpaC deletion derivatives revealed that the binding site for the C-terminal domain of HrcU is essential for HpaC function. This suggests that HpaC binding to the HrcU C terminus is key for the control of T3S. The C terminus of HrcU also provides a binding site for HrpB2; however, no interaction was observed with other T3S substrates including pilus, translocon and effector proteins. This is in contrast to HrcU homologs from animal pathogenic bacteria suggesting evolution of distinct mechanisms in plant and animal pathogenic bacteria for T3S substrate recognition.  相似文献   

2.
The bacterial type IV pilus (T4P) is the strongest biological motor known to date as its retraction can generate forces well over 100 pN. Myxococcus xanthus, a δ-proteobacterium, provides a good model for T4P investigations because its social (S) gliding motility is powered by T4P. In this study, the interactions among M. xanthus T4P proteins were investigated using genetics and the yeast two-hybrid (Y2H) system. Our genetic analysis suggests that there is an integrated T4P structure that crosses the inner membrane (IM), periplasm and the outer membrane (OM). Moreover, this structure exists in the absence of the pilus filament. A systematic Y2H survey provided evidence for direct interactions among IM and OM proteins exposed to the periplasm. For example, the IM lipoprotein PilP interacted with its cognate OM protein PilQ. In addition, interactions among T4P proteins from the thermophile Thermus thermophilus were investigated by Y2H. The results indicated similar protein-protein interactions in the T4P system of this non-proteobacterium despite significant sequence divergence between T4P proteins in T. thermophilus and M. xanthus. The observations here support the model of an integrated T4P structure in the absence of a pilus in diverse bacterial species.  相似文献   

3.
Pathogenicity of many Gram-negative bacteria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into eukaryotic cells. The membrane-spanning secretion apparatus is associated with a cytoplasmic ATPase complex and a predicted cytoplasmic (C) ring structure which is proposed to provide a substrate docking platform for secreted proteins. In this study, we show that the putative C ring component HrcQ from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for bacterial pathogenicity and T3S. Fractionation studies revealed that HrcQ localizes to the cytoplasm and associates with the bacterial membranes under T3S-permissive conditions. HrcQ binds to the cytoplasmic T3S-ATPase HrcN, its predicted regulator HrcL and the cytoplasmic domains of the inner membrane proteins HrcV and HrcU. Furthermore, we observed an interaction between HrcQ and secreted proteins including early and late T3S substrates. HrcQ might therefore act as a general substrate acceptor site of the T3S system and is presumably part of a larger protein complex. Interestingly, the N-terminal export signal of the T3S substrate AvrBs3 is dispensable for the interaction with HrcQ, suggesting that binding of AvrBs3 to HrcQ occurs after its initial targeting to the T3S system.  相似文献   

4.
The Gram‐negative bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a type III secretion system (T3SS) into eukaryotic cells. The T3SS spans both bacterial membranes and consists of more than 20 proteins, 9 of which are conserved in plant and animal pathogens and constitute the core subunits of the secretion apparatus. T3S in X. campestris pv. vesicatoria also depends on nonconserved proteins with yet unknown function including HrpB7, which contains predicted N‐ and C‐terminal coiled‐coil regions. In the present study, we provide experimental evidence that HrpB7 forms stable oligomeric complexes. Interaction and localisation studies suggest that HrpB7 interacts with inner membrane and predicted cytoplasmic (C) ring components of the T3SS but is dispensable for the assembly of the C ring. Additional interaction partners of HrpB7 include the cytoplasmic adenosinetriphosphatase HrcN and the T3S chaperone HpaB. The interaction of HrpB7 with T3SS components as well as complex formation by HrpB7 depends on the presence of leucine heptad motifs, which are part of the predicted N‐ and C‐terminal coiled‐coil structures. Our data suggest that HrpB7 forms multimeric complexes that associate with the T3SS and might serve as a docking site for the general T3S chaperone HpaB.  相似文献   

5.
Type IV pili (T4P) contain hundreds of major subunits, but minor subunits are also required for assembly and function. Here we show that Pseudomonas aeruginosa minor pilins prime pilus assembly and traffic the pilus-associated adhesin and anti-retraction protein, PilY1, to the cell surface. PilV, PilW, and PilX require PilY1 for inclusion in surface pili and vice versa, suggestive of complex formation. PilE requires PilVWXY1 for inclusion, suggesting that it binds a novel interface created by two or more components. FimU is incorporated independently of the others and is proposed to couple the putative minor pilin-PilY1 complex to the major subunit. The production of small amounts of T4P by a mutant lacking the minor pilin operon was traced to expression of minor pseudopilins from the P. aeruginosa type II secretion (T2S) system, showing that under retraction-deficient conditions, T2S minor subunits can prime T4P assembly. Deletion of all minor subunits abrogated pilus assembly. In a strain lacking the minor pseudopilins, PilVWXY1 and either FimU or PilE comprised the minimal set of components required for pilus assembly. Supporting functional conservation of T2S and T4P minor components, our 1.4 Å crystal structure of FimU revealed striking architectural similarity to its T2S ortholog GspH, despite minimal sequence identity. We propose that PilVWXY1 form a priming complex for assembly and that PilE and FimU together stably couple the complex to the major subunit. Trafficking of the anti-retraction factor PilY1 to the cell surface allows for production of pili of sufficient length to support adherence and motility.  相似文献   

6.
A systematic genetic analysis was performed to identify the inner membrane proteins essential for type IV pilus (T4P) expression in Pseudomonas aeruginosa. By inactivating the retraction aspect of pilus function, genes essential for T4P assembly were discriminated. In contrast to previous studies in the T4P system of Neisseria spp., we found that components of the inner membrane subcomplex consisting of PilMNOP were not essential for surface pilus expression, whereas the highly conserved inner membrane protein PilC was essential. Here, we present data that PilC may coordinate the activity of cytoplasmic polymerization (PilB) and depolymerization (PilT) ATPases via their interactions with its two cytoplasmic domains. Using in vitro co-affinity purification, we show that PilB interacts with the N-terminal cytoplasmic domain of PilC. We hypothesized that PilT similarly interacts with the PilC C-terminal cytoplasmic domain. Overexpression of that domain in the wild-type protein reduced twitching motility by ∼50% compared with the vector control. Site-directed mutagenesis of conserved T4P-specific residues in the PilC C-terminal domain yielded mutant proteins that supported wild-type pilus assembly but had a reduced capacity to support twitching motility, suggesting impairment of putative PilC-PilT interactions. Taken together, our results show that PilC is an essential inner membrane component of the T4P system, controlling both pilus assembly and disassembly.  相似文献   

7.
The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject effector proteins into the host cell cytoplasm. Efficient secretion of several effector proteins depends on the cytoplasmic global T3S chaperone HpaB. In this study, we show that HpaB interacts with the virulence factor HpaA, which is secreted by the T3S system and translocated into the plant cell. HpaA promotes secretion of pilus, translocon and effector proteins and therefore appears to be an important control protein of the T3S system. Protein-protein interaction studies and the analysis of HpaA deletion derivatives revealed that the C-terminal protein region, which contains a HpaB binding site, is crucial for the contribution of HpaA to T3S. Secretion of pilus and translocon proteins is not affected when HpaA is expressed as an N-terminal deletion derivative that lacks the secretion and translocation signal. Our data suggest that binding of HpaA to HpaB within the bacterial cell favours secretion of extracellular components of the secretion apparatus. Secretion of HpaA presumably liberates HpaB and thus promotes effector protein secretion after assembly of the T3S apparatus.  相似文献   

8.
The highly conserved pilM/N/O/P/Q gene cluster is among the core set of genes required for cell surface expression of type IV pili and associated twitching motility. With the exception of the outer membrane secretin, a multimer of PilQ subunits, the specific functions of the products encoded by this gene cluster are poorly characterized. Orthologous proteins in the related bacterial type II secretion system have been shown to interact to form an inner membrane complex required for protein secretion. In this study, we provide evidence that the PilM/N/O/P proteins form a functionally equivalent type IVa pilus complex. Using Pseudomonas aeruginosa as model organism, we found that all four proteins, including the nominally cytoplasmic PilM, colocalized to the inner membrane. Stability studies via Western blot analyses revealed that loss of one component has a negative impact on the levels of other members of the putative complex. Furthermore, complementation studies revealed that the stoichiometry of the components is important for the correct formation of a stable complex in vivo. We provide evidence that an intact inner membrane complex is required for optimal formation of the outer membrane complex of the type IVa pilus system in P. aeruginosa, as PilQ stability is negatively affected in its absence. Finally, we show that, in the absence of the pilin subunit, the levels of membrane-bound components of the inner membrane complex are negatively regulated by the PilR/S two-component system, suggesting a role for PilR/S in sensing the piliation status of the cell.  相似文献   

9.
Neisseria meningitidis is a frequent commensal of the human nasopharynx causing severe invasive infections in rare cases. A functional two-partner secretion (TPS) system in N. meningitidis, composed of the secreted effector protein HrpA and its cognate transporter HrpB, is identified and characterized in this study. Although all meningococcal strains harbor at least one TPS system, the hrpA genes display significant C-terminal sequence variation. Meningococcal genes encoding the TPS effector proteins and their transporters are closely associated and transcribed into a single mRNA. HrpA proteins are translocated across the meningococcal outer membrane by their cognate transporters HrpB and mainly released into the environment. During this process, HrpA is proteolytically processed to a mature 180-kDa form. In contrast to other known TPS systems, immature HrpA proteins are stable in the absence of HrpB and accumulate within the bacterial cell. A small percentage of mature HrpA remains associated with the bacteria and contributes to the interaction of meningococci with epithelial cells.  相似文献   

10.
The Salmonella flagellar secretion apparatus is a member of the type III secretion (T3S) family of export systems in bacteria. After completion of the flagellar motor structure, the hook-basal body (HBB), the flagellar T3S system undergoes a switch from early to late substrate secretion, which results in the expression and assembly of the external, filament propeller-like structure. In order to characterize early substrate secretion-signals in the flagellar T3S system, the FlgB, and FlgC components of the flagellar rod, which acts as the drive-shaft within the HBB, were subject to deletion mutagenesis to identify regions of these proteins that were important for secretion. The β-lactamase protein lacking its Sec-dependent secretion signal (Bla) was fused to the C-terminus of FlgB and FlgC and used as a reporter to select for and quantify the secretion of FlgB and FlgC into the periplasm. Secretion of Bla into the periplasm confers resistance to ampicillin. In-frame deletions of amino acids 9 through 18 and amino acids 39 through 58 of FlgB decreased FlgB secretion levels while deleting amino acid 6 through 14 diminished FlgC secretion levels. Further PCR-directed mutagenesis indicated that amino acid F45 of FlgB was critical for secretion. Single amino acid mutagenesis revealed that all amino acid substitutions at F45 of FlgB position impaired rod assembly, which was due to a defect of FlgB secretion. An equivalent F49 position in FlgC was essential for assembly but not for secretion. This study also revealed that a hydrophobic patch in the cleaved C-terminal domain of FlhB is critical for recognition of FlgB at F45.  相似文献   

11.
Pseudomonas syringae translocates effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). T3SS components HrpB, HrpD, HrpF, and HrpP were shown to be pathway substrates and to contribute to elicitation of the plant hypersensitive response and to translocation and secretion of the model effector AvrPto1.  相似文献   

12.
Type IV secretion (T4S) systems are versatile bacterial secretion systems mediating transport of protein and/or DNA. T4S systems are generally composed of 11 VirB proteins and 1 VirD protein (VirD4). The VirB1‐11 proteins assemble to form a secretion machinery and a pilus while the VirD4 protein is responsible for substrate recruitment. The structure of VirD4 in isolation is known; however, its structure bound to the VirB1‐11 apparatus has not been determined. Here, we purify a T4S system with VirD4 bound, define the biochemical requirements for complex formation and describe the protein–protein interaction network in which VirD4 is involved. We also solve the structure of this complex by negative stain electron microscopy, demonstrating that two copies of VirD4 dimers locate on both sides of the apparatus, in between the VirB4 ATPases. Given the central role of VirD4 in type IV secretion, our study provides mechanistic insights on a process that mediates the dangerous spread of antibiotic resistance genes among bacterial populations.  相似文献   

13.
Colonization of the human stomach by Helicobacter pylori is an important risk factor for development of gastric cancer. The H. pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) that translocates the bacterial oncoprotein CagA into gastric epithelial cells, and CagL is a specialized component of the cag T4SS that binds the host receptor α5β1 integrin. Here, we utilized a mass spectrometry-based approach to reveal co-purification of CagL, CagI (another integrin-binding protein), and CagH (a protein with weak sequence similarity to CagL). These three proteins are encoded by contiguous genes in the cag PAI, and are detectable on the bacterial surface. All three proteins are required for CagA translocation into host cells and H. pylori-induced IL-8 secretion by gastric epithelial cells; however, these proteins are not homologous to components of T4SSs in other bacterial species. Scanning electron microscopy analysis reveals that these proteins are involved in the formation of pili at the interface between H. pylori and gastric epithelial cells. ΔcagI and ΔcagL mutant strains fail to form pili, whereas a ΔcagH mutant strain exhibits a hyperpiliated phenotype and produces pili that are elongated and thickened compared to those of the wild-type strain. This suggests that pilus dimensions are regulated by CagH. A conserved C-terminal hexapeptide motif is present in CagH, CagI, and CagL. Deletion of these motifs results in abrogation of CagA translocation and IL-8 induction, and the C-terminal motifs of CagI and CagL are required for formation of pili. In summary, these results indicate that CagH, CagI, and CagL are components of a T4SS subassembly involved in pilus biogenesis, and highlight the important role played by unique constituents of the H. pylori cag T4SS.  相似文献   

14.
Type III secretion (T3S) is utilized by a wide range of gram-negative bacterial pathogens to allow the efficient delivery of effector proteins into the host cell cytoplasm through the use of a syringe-like injectisome. Chlamydophila pneumoniae is a gram-negative, obligate intracellular pathogen that has the structural genes coding for a T3S system, but the functionality of the system has not yet been demonstrated. T3S is dependent on ATPase activity, which catalyzes the unfolding of proteins and the secretion of effector proteins through the injectisome. CdsN (Cpn0707) is predicted to be the T3S ATPase of C. pneumoniae based on sequence similarity to other T3S ATPases. Full-length CdsN and a C-terminal truncation of CdsN were cloned as glutathione S-transferase (GST)-tagged constructs and expressed in Escherichia coli. The GST-tagged C-terminal truncation of CdsN possessed ATPase activity, catalyzing the release of ADP and P(i) from ATP at a rate of 0.55 +/- 0.07 micromol min(-1) mg(-1) in a time- and dose-dependent manner. CdsN formed oligomers and high-molecular-weight multimers, as assessed by formaldehyde fixation and nondenaturing polyacrylamide gel electrophoresis. Using bacterial two-hybrid and GST pull-down assays, CdsN was shown to interact with CdsD, CdsL, CdsQ, and CopN, four putative structural components of the C. pneumoniae T3S system. CdsN also interacted with an unannotated protein, Cpn0706, a putative CdsN chaperone. Interactions between CdsN, CdsD, and CopN represent novel interactions not previously reported for other bacterial T3S systems and may be important in the localization and/or function of the ATPase at the inner membrane of C. pneumoniae.  相似文献   

15.
16.
Enteroaggregative Escherichia coli (EAEC) is a pathogen implicated in several infant diarrhea or diarrheal outbreaks in areas of endemicity. Although multiple genes involved in EAEC pathogenesis have been identified, the overall mechanism of virulence is not well understood. Recently, a novel secretion system, called type VI secretion (T6S) system (T6SS), has been identified in EAEC and most animal or plant gram-negative pathogens. T6SSs are multicomponent cell envelope machines responsible for the secretion of at least two putative substrates, Hcp and VgrG. In EAEC, two copies of T6S gene clusters, called sci-1 and sci-2, are present on the pheU pathogenicity island. In this study, we focused our work on the sci-1 gene cluster. The Sci-1 apparatus is probably composed of all, or a subset of, the 21 gene products encoded on the cluster. Among these subunits, some are shared by all T6SSs identified to date, including a ClpV-type AAA+ ATPase (SciG) and an IcmF (SciS) and an IcmH (SciP) homologue, as well as a putative lipoprotein (SciN). In this study, we demonstrate that sciN is a critical gene necessary for T6S-dependent secretion of the Hcp-like SciD protein and for biofilm formation. We further show that SciN is a lipoprotein, as shown by the inhibition of its processing by globomycin and in vivo labeling with [3H]palmitic acid. SciN is tethered to the outer membrane and exposed in the periplasm. Sequestration of SciN at the inner membrane by targeting the +2 residue responsible for lipoprotein localization (Gly2Asp) fails to complement an sciN mutant for SciD secretion and biofilm formation. Together, these results support a model in which SciN is an outer membrane lipoprotein exposed in the periplasm and essential for the Sci-1 apparatus function.  相似文献   

17.
Type IV pili are important for microcolony formation, biofilm formation, twitching motility, and attachment. We and others have shown that type IV pili are important for protein secretion across the outer membrane, similar to type II secretion systems. This study explored the relationship between protein secretion and pilus formation in Vibrio cholerae. The toxin-coregulated pilus (TCP), a type IV pilus required for V. cholerae pathogenesis, is necessary for the secretion of the colonization factor TcpF (T. J. Kirn, N. Bose, and R. K. Taylor, Mol. Microbiol. 49:81–92, 2003). This phenomenon is not unique to V. cholerae; secreted virulence factors that are dependent on the presence of components of the type IV pilus biogenesis apparatus for secretion have been reported with Dichelobacter nodosus (R. M. Kennan, O. P. Dhungyel, R. J. Whittington, J. R. Egerton, and J. I. Rood, J. Bacteriol. 183:4451–4458, 2001) and Francisella tularensis (A. J. Hager et al., Mol. Microbiol. 62:227–237, 2006). Using site-directed mutagenesis, we demonstrated that the secretion of TcpF is dependent on the presence of selected amino acid R groups at position five. We were unable to find other secretion determinants, suggesting that Y5 is the major secretion determinant within TcpF. We also report that proteins secreted in a type IV pilus biogenesis apparatus-dependent manner have a YXS motif within the first 15 amino acids following the Sec cleavage site. The YXS motif is not present in proteins secreted by type II secretion systems, indicating that this is unique to type IV pilus-mediated secretion. Moreover, we show that TcpF interacts with the pilin TcpA, suggesting that these proteins are secreted by the type IV pilus biogenesis system. These data provide a starting point for understanding how type IV pili can mediate secretion of virulence factors important for bacterial pathogenesis.  相似文献   

18.
Helicobacter pylori are among the most successful human pathogens that harbour a distinct genomic segment called cag Pathogenicity Island (cag-PAI). This genomic segment codes for a type IV secretion system (Cag-T4SS) related to the prototypical VirB/D4 system of Agrobacterium tumefaciens (Ag), a plant pathogen. Some of the components of Cag-T4SS share homology to that of VirB proteins including putative energy providing CagE (HP0544), the largest VirB4 homologue. In Ag, VirB4 is required for the assembly of the system, substrate translocation and pilus formation, however, very little is known about CagE. Here we have characterised the protein biochemically, genetically, and microscopically and report that CagE is an inner membrane associated active NTPase and has multiple interacting partners including the inner membrane proteins CagV and Cagβ. Through CagV it is connected to the outer membrane sub-complex proteins. Stability of CagE is not dependent on several of the cag-PAI proteins tested. However, localisation and stability of the pilus associated CagI, CagL and surface associated CagH are affected in its absence. Stability of the inner membrane associated energetic component Cagβ, a VirD4 homologue seems to be partially affected in its absence. Additionally, CagA failed to cross the membrane barriers in its absence and no IL-8 induction is observed under infection condition. These results thus suggest the importance of CagE in Cag-T4SS functions. In future it may help in deciphering the mechanism of substrate translocation by the system.  相似文献   

19.
The virulence of a large number of Gram-negative bacterial pathogens depends on the type III secretion (T3S) system, which transports select bacterial proteins into host cells. An essential component of the Yersinia T3S system is YscD, a single-pass inner membrane protein. We report here the 2.52-Å resolution structure of the cytoplasmic domain of YscD, called YscDc. The structure confirms that YscDc consists of a forkhead-associated (FHA) fold, which in many but not all cases specifies binding to phosphothreonine. YscDc, however, lacks the structural properties associated with phosphothreonine binding and thus most likely interacts with partners in a phosphorylation-independent manner. Structural comparison highlighted two loop regions, L3 and L4, as potential sites of interactions. Alanine substitutions at L3 and L4 had no deleterious effects on protein structure or stability but abrogated T3S in a dominant negative manner. To gain insight into the function of L3 and L4, we identified proteins associated with YscD by affinity purification coupled to mass spectrometry. The lipoprotein YscJ was found associated with wild-type YscD, as was the effector YopH. Notably, the L3 and L4 substitution mutants interacted with more YopH than did wild-type YscD. These substitution mutants also interacted with SycH (the specific chaperone for YopH), the putative C-ring component YscQ, and the ruler component YscP, whereas wild-type YscD did not. These results suggest that substitutions in the L3 and L4 loops of YscD disrupted the dissociation of SycH from YopH, leading to the accumulation of a large protein complex that stalled the T3S apparatus.  相似文献   

20.
Helicobacter pylori strains harboring the cag pathogenicity island (PAI) have been associated with more severe gastric disease in infected humans. The cag PAI encodes a type IV secretion (T4S) system required for CagA translocation into host cells as well as induction of proinflammatory cytokines, such as interleukin-8 (IL-8). cag PAI genes sharing sequence similarity with T4S components from other bacteria are essential for Cag T4S function. Other cag PAI-encoded genes are also essential for Cag T4S, but lack of sequence-based or structural similarity with genes in existing databases has precluded a functional assignment for the encoded proteins. We have studied the role of one such protein, Cag3 (HP0522), in Cag T4S and determined Cag3 subcellular localization and protein interactions. Cag3 is membrane associated and copurifies with predicted inner and outer membrane Cag T4S components that are essential for Cag T4S as well as putative accessory factors. Coimmunoprecipitation and cross-linking experiments revealed specific interactions with HpVirB7 and CagM, suggesting Cag3 is a new component of the Cag T4S outer membrane subcomplex. Finally, lack of Cag3 lowers HpVirB7 steady-state levels, further indicating Cag3 makes a subcomplex with this protein.Helicobacter pylori infects 50% of the world population. Stomach infection with this bacterium is associated with the development of several gastric diseases, including chronic active gastritis, peptic ulcers, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. Factors influencing disease outcomes are not completely understood, but bacterial, host, and environmental factors have been identified that affect the dynamics of this bacterium-host interaction (30). A hallmark of H. pylori infection is the induction of mucosal inflammation, which is a risk factor for developing more severe pathology (27).Epidemiological studies have established that infection with strains harboring the cag pathogenicity island (PAI) leads to a higher risk for development of severe disease (27). The cag PAI size varies between 35 and 40 kb and encodes 27 putative proteins (1, 13). Several of the encoded proteins share sequence similarities with components of the prototypical type IV secretion (T4S) system VirB/D4 of Agrobacterium tumefaciens (15, 16). Based on research done in A. tumefaciens, the components of the molecular machinery have been divided into channel or core complex components (VirB6, VirB7, VirB8, VirB9, and VirB10), energetic components (VirB11, VirB4, and VirD4), and extracellular appendage components (VirB2 and VirB5). VirB6, VirB8, and VirB10 are components anchored at the inner membrane with domains spanning the periplasm, while VirB7 and VirB9 are located at the outer membrane. Energetic components are located at the inner membrane, and pilus components include the main subunit VirB2 and accessory components, such as VirB5, which functions as an adhesin (15, 16). The VirB/D4 T4S is thought to be energized by the inner membrane ATPases, and this energy is transduced to VirB10 and the outer membrane complex for protein translocation (11). The lipoprotein VirB7 is critical for the stability of HpVirB9 at the outer membrane (19).While the extent of homology of the H. pylori cag T4S components is often limited, sequence analysis has allowed the identification of the VirB11 (HP0525 and HpVirB11), VirB10 (HP0527 and HpVirB10), VirB9 (HP0528 and HpVirB9), and VirD4 (HP0524 and HpVirD4) homologues as summarized in Table S1 of the supplemental material (1, 13, 28). HpVirB9 and HpVirB10 homologies are not distributed along the entire length of the protein. For example, HpVirB10 is a very large protein with only a short domain similar to VirB10. HpVirB10 is also reported to localize on the external surface of the pilus (31), while VirB10 is tethered in the inner membrane. HP0529 (HpVirB6) and HP0530 (HpVirB8) have been assigned as homologs of VirB6 and VirB8, respectively (28). HP0523 (HpVirB1) has lytic transglycosylase activity, supporting its designation as a VirB1 homolog (38). HP0532 (HpVirB7) has a lipoprotein attachment site, suggesting a role as a VirB7 homolog (1, 28), and has been suggested to stabilize a Cag T4S outer membrane subcomplex containing CagM, HpVirB9, and HpVirB10 (28).The activity of the cag PAI-encoded T4S system is responsible for the translocation of the effector protein CagA and induction of proinflammatory chemokine and cytokine secretion, including the chemokine interleukin-8 (IL-8) (7). CagA T4S-mediated translocation into host cells is followed by tyrosine phosphorylation on specific tyrosine phosphorylation motifs (EPIYA motifs) at the C-terminal region of the protein and both phosphorylation-dependent and -independent interference with host cellular pathways. The induction of proinflammatory chemokine production is mediated by a still-uncharacterized Cag T4S-mediated delivery of peptidoglycan into host cells and subsequent activation of Nod receptors (37), and it has also been reported that CagA itself has proinflammatory properties (9). The molecular mechanisms responsible for Cag T4S system assembly and activity remain unclear.Null alleles of the genes with homology to T4S components (HpVirB11, HpVirB4, HpVirB6, HpVirB7, HpVirB8, HpVirB9, and HpVirB10) abolish both CagA translocation and IL-8 induction, with the exception of HpVirD4, which affects CagA translocation but not IL-8 induction (20). Other genes of the island also essential for Cag T4S function do not share sequence or structural homology with known T4S components. More detailed analysis of these Cag T4S essential genes allowed the recent assignment of several proteins as functional homologs of additional VirB components. HP0546 was suggested as a VirB2 homolog, the main subunit of other T4S system pili (3). Ultrastructural work suggested that HpVirB10 is also a major subunit of the Cag T4S system pilus (31, 35), but clear evidence that either HpVirB2 or HpVirB10 is the main pilus subunit is still lacking. CagL (HP0539) has been identified (29) as an adhesin (functionally similar to VirB5) whose binding to host cell receptors is required for activation of the secretion process, and CagF (HP0543) has been characterized as a CagA chaperone (17). CagD (HP0545) has been recently reported as a multifunctional Cag T4S component essential for CagA translocation and full IL-8 secretion induction (12).We have characterized the biochemical role of an additional essential H. pylori-specific gene, HP0522/cag3, in Cag T4S. A previous yeast two-hybrid screen that investigated interactions among cag PAI proteins suggested Cag3 could interact with HpVirB8, HpVirB7, CagM (HP0537), and CagG (HP0542) (10). To begin to understand the molecular basis of Cag3 function in T4S we investigated the subcellular localization of the Cag3 protein and the protein-protein interactions this protein establishes in H. pylori cells. We found evidence suggesting that Cag3 is an integral part of the Cag T4S outer membrane subcomplex required to maintain HpVirB7 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号