首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis thaliana L. produces flavonoid pigments, i.e. flavonols, anthocyanidins and proanthocyanidins, from dihydroflavonol substrates. A small family of putative flavonol synthase (FLS) genes had been recognized in Arabidopsis, and functional activity was attributed only to FLS1. Nevertheless, other FLS activities must be present, because A. thalianafls1 mutants still accumulate significant amounts of flavonols. The recombinant FLSs and leucoanthocyanidin dioxygenase (LDOX) proteins were therefore examined for their enzyme activities, which led to the identification of FLS3 as a second active FLS. This enzyme is therefore likely responsible for the formation of flavonols in the ldox/fls1-2 double mutant. These double mutant and biochemical data demonstrate for the first time that LDOX is capable of catalyzing the in planta formation of flavonols.  相似文献   

2.
The UV-honey guides of Rudbeckia hirta were investigated by UV-photography, reflectance spectroscopy, LC-MS analysis and studies of the enzymes involved in the formation of the UV-absorbing flavonols present in the petals. It was shown for the first time that the typical bull’s eye pattern is already established at the early stages of flower anthesis on the front side of the petal surface, but is hidden to pollinators until the buds are open and the petals are unfolded. The rear side of the petals remains UV-reflecting during the whole flower anthesis. Studies on the local distribution of 19 flavonols across the petals confirmed that the majority are concentrated in the basal part of the ray flower. However, in contrast to the earlier studies, eupatolitin 3-O-glucoside (6,7-dimethoxyquercetin 3-O-glucoside) was present in both the basal and apical parts of the petals, whereas eupatolin (6,7-dimethoxyquercetin 3-O-rhamnoside) was exclusively found in the apical parts. The enzymes involved in the formation of the flavonols in R. hirta were demonstrated for the first time. These include a rare flavonol 6-hydroxylase, which was identified as cytochrome P450-dependent monooxygenase and did not accept any methylated flavonol as substrate. All enzymes were present in the basal and apical parts of the petals, although some of them clearly showed higher activities in the basal part. This indicates that the local accumulation of flavonols in R. hirta is not achieved by a locally restricted presence of the enzymes involved in flavonol formation.  相似文献   

3.
Three anthocyanins (13) and eight flavonols (411) were isolated from the flowers of Amherstia nobilis endemic to Myanmar. Anthocyanins were identified as cyanidin 3-O-glucoside (1), 3-O-xyloside (2), and peonidin 3-O-glucoside (3). On the other hand, flavonols were identified as isorhamnetin 3-O-glucoside (4), 7-O-glucoside (5), 3,7-di-O-glucoside (6) and 3-O-rutinoside (7), quercetin 3-O-rutinoside (8) and 3-O-glucoside (9), and kaempferol 3-O-rutinoside (10) and 3-O-glucoside (11). Although an anthocyanin, pelargonidin 3-O-pentoside, has been reported from the flowers of A. nobilis, it was not found in this survey. The presence of flavonols in A. nobilis was reported in this survey for the first time. Flavonoid composition of Amherstia was chemotaxonomically compared with those of phylogenetically related genera Cynometra and Brownea.  相似文献   

4.
Twenty-four different flavonoid glycosides were isolated from illuminated cell suspension cultures of parsley (Petroselinum hortense). The chemical structures of fourteen of these compounds were further characterized. The aglycones identified were the flavones apigenin, luteolin and chrysoeriol, and the flavonols quercetin and isorhamnetin. The flavones occurred either as 7-O-glucosides or as 7-O-apioglucosides, while the flavonols were 3-O-monoglucosides or 3,7-O-diglucosides. One-half of these glycosides were electrophoretically mobile and substituted with malonate residues.  相似文献   

5.
The flavonoids and xanthones in the leaves of Amorphophallus titanum, which has the largest inflorescence among all Araceous species, were surveyed. Eight C-glycosylflavones, five flavonols, one flavone O-glycoside and two xanthones were isolated and characterized as vitexin, isovitexin, orientin, isoorientin, schaftoside, isoschaftoside, vicenin-2 and lucenin-2 (C-glycosylflavones), kaempferol 3-O-robinobioside, 3-O-rutinoside and 3-O-rhamnosylarabinoside, and quercetin 3-O-robinobioside and 3-O-rutinoside (flavonols), luteolin 7-O-glucoside (flavone), and mangiferin and isomangiferin (xanthones). Although the inflorescence of this species has been surveyed for flavonoids, those of the leaves were reported for the first time.  相似文献   

6.
Flavonols and hydroxycinnamic acids are known to contribute to plant resistance against pathogens, but there are few reports on the implication of flavonols in the resistance of grapevine against Plasmopara viticola, and none on the involvement of hydroxycinnamic acids. In order to analyze the effect of flavonols on P. viticola infection, variable amounts of flavonols were induced by different light conditions in otherwise phenologically identical leaves. Differences in content of leaf hydroxycinnamic acids were induced at the same time. A non-invasive monitoring of flavonols and hydroxycinnamic acids was performed with Dualex leaf-clip optical sensors. Whatever the light condition, there were no significant changes in flavonol or in hydroxycinnamic acid contents for control and inoculated leaves during the development of P. viticola until 6 days after inoculation. The violet-blue autofluorescence of stilbenes, the main phytoalexins of grapevine that accumulate in inoculated leaves, was used as an indicator of infection by P. viticola. The implication of leaf constitutive flavonols and hydroxycinnamic acids in the defence of Vitis vinifera against P. viticola could be investigated in vivo thanks to this indicator. The increase in stilbene violet-blue autofluorescence started earlier for leaves with low flavonol content than for leaves with higher content, suggesting that constitutive flavonols are able to slow down the infection by P. viticola. On the contrary, constitutive hydroxycinnamic acids did not seem to play a role in defence against P. viticola. The non-destructive nature of the methods used alleviates the major problem of destructive experiments: the large variability in leaf phenolic contents.  相似文献   

7.
8.
Thirty-four species of the genus Plectranthus (including species of the former genera Coleus and Solenostemon, fam. Lamiaceae) were surveyed for exudate flavonoids to see whether the distribution of these compounds would support a recent classification of the genus based on molecular and morphological characters. In this classification two major groups had been identified, the Coleus and Plectranthus clades. Only about 40% of the species, predominantly from the Plectranthus clade, were found to produce exudate flavonoids, which were mainly flavones. Flavanones were restricted to five species of the Plectranthus clade, whereas flavonols were only found in two species of the Coleus clade, Plectranthus montanus Benth. (synonyms Plectranthus marrubioides Hochst. ex Benth. and Plectranthus cylindraceus Hochst. ex Benth.) and Plectranthus pseudomarrubioides R.H.Willemse. Four of these flavonols were isolated from P. montanus and identified by NMR spectroscopy as the 3,7-dimethyl ether and 3,7,4′-trimethyl ether of quercetin and the 3,6,7-trimethyl ether and 3,6,7,4′-tetramethyl ether of quercetagetin. The remaining flavonols and flavones were identified by HPLC–UV and LC–MS of crude extracts on the basis of their UV and mass spectra, retention times and comparison with standards. Most flavonols were 3-methyl ethers and many of the flavones and flavonols were oxygenated at the 6-position. The most common flavones, occurring in both clades, were cirsimaritin and salvigenin, which are methoxylated at the 6- and 7-positions. 6-Hydroxylated flavones such as scutellarein and ladanein were restricted to species of the Plectranthus clade.  相似文献   

9.
A leaf wash of Wyethia bolanderi afforded eight known methylated flavonols: santin, ermanin, jaceidin, 3,6-dimethoxyapigenin, kaempferide, isokaempferide, axillarin and quercetin 3-methyl ether. A leaf wash of Balsamorhiza macrophylla afforded six known methylated flavonols: centaureidin, quercetin 3,4′-dimethyl ether, axillarin, spinacetin, tamarexetin and quercetin 3-methyl ether. The chemotaxonomy of the two genera is discussed briefly.  相似文献   

10.
Two new and eleven known 6-methoxyflavonoids were identified in leaf tissue of Brickellia californica. The new flavonols are eupatin 3-SO3 Ca1/2 and patuletin 3-SO3K. The known compounds include the flavones hispidulin and eupafolin and their respective 7- and 4′-monomethyl ethers and the flavonols; spinacetin, eupatin, patuletin 3-glucoside and 3-galactoside, and eupatolitin 3-galactoside.  相似文献   

11.
The partially purified O-methyltransferase (OMT) system of Chrysosplenium americanum was found to catalyse the stepwise O-methylation of quercetin to its mono-, di- and trimethyl derivatives. It also utilized the partially methylated flavonol intermediates to form the next higher order of O-methylated products; thus indicating the involvement of several OMTs. The latter were resolved by chromatofocusing into three distinct peaks of enzyme activity which focused at pI values 4.8, 5.4 and 5.7. The former enzyme O-methylated quercetin at the 3-position, whereas the latter two O-methylated 3, 7-di-O-methyl quercetagetin at the 3′- and 6-positions, respectively. None of the focused enzymes accepted caffeic acid, or other flavonoids such as kaempferol or luteolin, as substrates; thus indicating specificity towards flavonols with 3′, 4′- substitution. The three OMTs had similar MWs and the Km values for their substrates were of the same order of magnitude. The biochemical role of these novel enzymes is discussed in relation to the biosynthesis of polymethylated flavonols in this tissue.  相似文献   

12.
Kaempferol and quercetin 3-O-glycosides were found in the closely related species, Parthenium hysterophorus, P. bipinnatifidum and P. glomeratum; the major aglycone flavonols in P. hypterophorus are quercetagetin 3,7-dimethyl ether and a new flavonoid, 6-hydroxykaempferol 3,7-dimethyl ether. The North-South American species-pair P. glomeratum (Argentina) and P. bipinnatifidum (Mexico) yielded quercetagetin 3,7,3′-trimethyl ether as the major aglycone. The desert species P. rollinsianum yielded five methylated flavonols: quercetin 3,3′-dimethyl ether, penduletin, quercetagetin 3,6,7-trimethyl ether, polycladin and artemetin.  相似文献   

13.
Five flavonols, four flavones and one C-glycosylflavone were isolated from the leaves of Cathcartia villosa which is growing in the Himalayan Mountains. They were characterized as quercetin 3-O-vicianoside (1), quercetin 7,4′-di-O-glucoside (3), quercetin 3-O-rutinoside (4), quercetin 3-O-glucoside (5), quercetin 3-O-arabinosylarabinosylglucoside (6) (flavonols), luteolin (7), luteolin 7-O-glucoside (8), apigenin (9), chrysoeriol (10) (flavones), and vicenin-2 (11) (C-glycosylflavone) by UV, LC-MS, acid hydrolysis, NMR and/or HPLC and TLC comparisons with authentic samples. On the other hand, two flavonols 1 and kaempferol 3-O-vicianoside (2) were isolated and identified from the flowers of the species. Flavonoids were reported from the genus Cathcartia in this survey for the first time. Their chemical characters were chemotaxonomically compared with those of related Papaveraceous genera, Meconopsis and Papaver.  相似文献   

14.
The flavonoids metabolic pathway plays central roles in floral coloration, in which anthocyanins and flavonols are derived from common precursors, dihydroflavonols. Flavonol synthase (FLS) catalyses dihydroflavonols into flavonols, which presents a key branch of anthocyanins biosynthesis. The yellow flower of Camellia nitidissima Chi. is a unique feature within the genus Camellia, which makes it a precious resource for breeding yellow camellia varieties. In this work, we characterized the secondary metabolites of pigments during floral development of C. nitidissima and revealed that accumulation of flavonols correlates with floral coloration. We first isolated CnFLS1 and showed that it is a FLS of C. nitidissima by gene family analysis. Second, expression analysis during floral development and different floral organs indicated that the expression level of CnFLS1 was regulated by developmental cues, which was in agreement with the accumulating pattern of flavonols. Furthermore, over-expression of CnFLS1 in Nicotiana tabacum altered floral colour into white or light yellow, and metabolic analysis showed significant increasing of flavonols and reducing of anthocyanins in transgenic plants. Our work suggested CnFLS1 plays critical roles in yellow colour pigmentation and is potentially a key point of genetic engineering toward colour modification in Camellia.  相似文献   

15.
《Phytochemistry》1986,26(1):135-138
Cell-free extracts of Flaveria bidentis and F. chloraefolia catalysed the transfer of sulphate groups from 3′-phosphoadenosine-5′-phosphosulphate to the hydroxyl groups of a variety of hydroxylated and O-methylated flavonols, but not to flavones or phenylpropanoids. Enzymatic sulphation was more predominant at the 3-hydroxyl group, but not to the exclusion of other hydroxyl substituents on the flavonoid ring. Quercetin was sulphated to yield its mono-, di-, tri- and tetrasulphate esters. This, together with the differences observed in the sulphation of different flavonols by extracts of both Flaveria species, suggests the existence of a number of distinct, position-specific sulphotransferases (EC 2.8.2.-). The sulphation reaction was catalysed at an optimum pH of 7.5 in Tris-HCl buffer, required SH groups for activity and was stimulated in the presence of divalent cations.  相似文献   

16.
Twenty-five flavonoid glycosides were detected in Tribulus pentandrus and T. terrestris. The glycosides belong to the common flavonols, kaempferol, quercetin and isorhamnetin, with the 3-gentiobiosides as the major glycosides. Traces of a flavone (tricin) glycoside was also present in T. pentandrus. The separation of Tribulaceae as a distinct family from Zygophyllaceae is discussed.  相似文献   

17.
Miles CD  Hagen CW 《Plant physiology》1968,43(9):1347-1354
Extracts of the flower petals of Impatiens balsamina L. contain enzymes which catalyze the glycosylation of phenolic compounds. Enzymes have been extracted which glycosylate hydroquinone to arbutin and at least 3 different flavonols to the 3-monoglucoside. The hydroquinone glucosylating enzyme is similar to enzymes previously described except that it requires an unidentified low molecular weight cofactor. The glucosylation of flavonols follows normal enzyme kinetics; it requires a nucleotide diphosphate glucose donor for activity, and is made more evident by the presence of glucono-1:5-lactone, an inhibitor of endogenous glucosidases. It is suggested that the flavonol glucosylating enzyme acts naturally to glucosylate a precursor of both flavonols and anthocyanins to the 3-monoglucoside. The only elaboration of an anthocyanin observed with petal extracts was an acylation of pelargonidin-3-monoglucoside.  相似文献   

18.
In a leaf survey of 54 specimens of 11 Old World Lupinus species three classes of flavonoids were detected: flavones (in 82%), flavonols (in 36%) and flavone C-glycosides (in 55%). The rough-seeded species were clearly distinguished from the smooth-seeded taxa by the presence of a novel 2′-hydroxyflavone, luteolin and flavone C-glycosides as major leaf constituents and by the absence of flavonols. Within the smooth-seeded species, there are three flavonoid patterns: (a) flavonols only, L. albus; (b) flavones and flavonols, L. luteus, L. hispanicus and L. angustifolius; and (c) flavones only, L. micranthus. L. angustifolius further differed in uniquely producing diosmetin as a major leaf constituent. These divisions coincide exactly with previous groupings based on alkaloidal and morphological data. Amongst the 12 samples of L. angustifolius three chemical races were distinguished and a number of diosmetin glucoside malate esters detected. The flower flavonoid aglycone patterns of the nine Old World species surveyed differed markedly from the corresponding leaf profiles by the presence of flavones: luteolin and apigenin in eight and chrysoeriol in seven species as major constituents, while flavone C-glycosides were found only in trace amount in three species. In a leaf flavonoid survey of 13 representative New World Lupinus taxa, glycoflavones were major leaf components, a variety of methylated flavones were identified and flavonols were absent. The presence of the novel 2′-hydroxyflavone in five New World species may indicate some evolutionary link with the rough seeded taxa of the Old World.  相似文献   

19.
Peroxidases have been shown to catalyse the degradation of flavonols via 2,3-dihydroxyflavanones to benzoic acids. Incubation of (U-14C)-kaempferol with pure horseradish peroxidase leads to the same reaction products (2,3,4,5,7,4′-pentahydroxyflavanone, p-hydroxybenzoic acid, 14CO2, several polar, water soluble catabolites as given by enzyme preparations from various plant species. Further reactions of flavonols and their glycosides with peroxidases are discussed. All peroxidase isoenzymes of Sinapis alba and Cicer arietinum, obtained by isoelectric focusing, have been shown to degrade flavonols at the same rate. The peroxidase catalysed degradation of polyphenols is discussed in relation to IAA oxidase.  相似文献   

20.
The tissue localisation of flavonoids has been studied in leaves of Betula, Corylus, Fagus, Fraxinus, Pisum, Platanus, Quercus, Spinacia and Tilia and scales of onion bulbs. All these species contain flavonols which are, for the most part, located in the upper epidermis of the leaves. In the onion bulb, flavonols are exclusively in the epidermis. The flavonols are glycosylated and dissolved in the vacuoles. The leaves were fractionated by an original technique of abrasion of the frozen material. The physiological significance of such a distribution of flavonoids in the adult leaves or scales is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号