首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In highly invaded ecosystems, restoration of native plant communities is dependent upon reducing exotic species relative to native species. Even so, in monitoring, the native–exotic species richness ratio has been shown to be scale‐dependent. Measurement at small spatial scales (<1 m2) can reveal a negative native–exotic richness relationship, where niche occupation may prevent invasion. Conversely, at larger scales, a positive correlation may exist, where environmental heterogeneity and equally favorable conditions may drive native–exotic relationships. Here, we compare slopes of native–exotic relationships across spatial scales in a prairie undergoing active restoration. The observed native–exotic richness ratios varied considerably over scales ranging from 1 to 1,000 m2, emphasizing the importance of choosing a measurement scale that is most pertinent to the treatment and ecological mechanism used to evaluate restoration success. Our native–exotic richness slopes were positive over all scales, but lower than would be expected in a random community assembly, suggesting the influence of niche‐based competition. Correspondingly, our native–exotic cover slope was more negative than a null model; however, areas of frequent fire treatments showed a significant deviation from null only for richness, indicating that burning may enhance native–exotic competitive dynamics for number of species but not cover. The negative native–exotic cover relationships appear to be driven in this system mainly by exotic graminoids, across burn treatments and native functional groups, supporting the concept that frequent burning can alter the dominant competitive mechanism from coverage of these exotic grasses to an improved environment for germination and dispersal of more native species.  相似文献   

2.
Ecosystems - Nitrogen (N) uptake is a key process in stream ecosystems that is mediated mainly by benthic microorganisms (biofilms on different substrata) and has implications for the...  相似文献   

3.
Khon Kaen Province in northeast Thailand is known as a hot spot for opisthorchiasis in Southeast Asia. Preliminary allozyme and mitochondrial DNA haplotype data from within one endemic district in this Province (Ban Phai), indicated substantial genetic variability within Opisthorchis viverrini. Here, we used microsatellite DNA analyses to examine the genetic diversity and population structure of O. viverrini from four geographically close localities in Khon Kaen Province. Genotyping based on 12 microsatellite loci yielded a mean number of alleles per locus that ranged from 2.83 to 3.7 with an expected heterozygosity in Hardy–Weinberg equilibrium of 0.44–0.56. Assessment of population structure by pairwise FST analysis showed inter-population differentiation (P<0.05) which indicates population substructuring between these localities. Unique alleles were found in three of four localities with the highest number observed per locality being three. Our results highlight the existence of genetic diversity and population substructuring in O. viverrini over a small spatial scale which is similar to that found at a larger scale. This provides the basis for the investigation of the role of parasite genetic diversity and differentiation in transmission dynamics and control of O. viverrini.  相似文献   

4.

Background

The coral reefs of Zanzibar Island (Unguja, Tanzania) encompass a considerable proportion of the global coral-reef diversity and are representative of the western Indian Ocean region. Unfortunately, these reefs have been recently subjected to local and regional disturbances. The objectives of this study were to determine whether there are potentially non-random processes forcing the observed coral diversity patterns, and highlight where and at which spatial scales these processes might be most influential.

Methodology/Principal Findings

A hierarchical (nested) sampling design was employed across three spatial scales, ranging from transects (≤20 m), stations (<100 m), to sites (<1000 m), to examine coral diversity patterns. Two of the four sites, Chumbe and Mnemba, were located within Marine Protected Areas (MPAs), while the other two sites, Changuu and Bawe, were not protected. Additive partitioning of coral diversity was used to separate regional (total) diversity (γ) into local α diversity and among-sample β diversity components. Individual-based null models were used to identify deviations from random distribution across the three spatial scales. We found that Chumbe and Mnemba had similar diversity components to those predicted by the null models. However, the diversity at Changuu and Bawe was lower than expected at all three spatial scales tested. Consequently, the relative contribution of the among-site diversity component was significantly greater than expected. Applying partitioning analysis for each site separately revealed that the within-transect diversity component in Changuu was significantly lower than the null expectation.

Conclusions/Significance

The non-random outcome of the partitioning analyses helped to identify the among-sites scale (i.e., 10''s of kilometers) and the within-transects scale (i.e., a few meters; especially at Changuu) as spatial boundaries within which to examine the processes that may interact and disproportionately differentiate coral diversity. In light of coral community compositions and diversity patterns we strongly recommend that Bawe be declared a MPA.  相似文献   

5.
Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matérn correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.  相似文献   

6.
The frequency of dispersal of invertebrates among lakes depends upon perspective and spatial scale. Effective passive dispersal requires both the transport of propagules and the establishment of populations large enough to be detected. At a global scale, biogeographic patterns of cladoceran zooplankton species suggest that effective dispersal among continents was originally rare, but greatly increased in the past century with expanded commerce. Genetic analysis allows some reconstruction of past dispersal events. Allozyme and mitochondrial DNA comparisons among New World and Old-World populations of several exotic cladocerans have provided estimates for likely source populations of colonists, their dispersal corridors, and timing of earlier dispersal events. Detecting the Old-World tropical exotic Daphnia lumholtzi early in its invasion of North America has allowed detailed analysis of its spatial spread. Twelve years of collection records indicate a rapid invasion of reservoirs in the United States, by both regional spread and long-distance jumps to new regions. Combining landscape features with zooplankton surveys from south-central US reservoirs revealed higher colonization rates of D. lumholtzi at lower landscape positions, a result which can be explained by either greater propagule load or by higher susceptibility of these downstream reservoirs. Because invaded reservoirs provide a source of propagules for nearby floodplain ponds, the rarity of this species in ponds suggests limitation by local environments. Such analyses of invading species over multiple spatial scales allow a better understanding of ecological processes governing invasion dynamics.  相似文献   

7.
Abstract Ecosystem patterns and disturbance processes at one spatial scale often interact with processes at another scale, and the result of such cross-scale interactions can be nonlinear dynamics with thresholds. Examples of cross-scale pattern-process relationships and interactions among forest dieback, fire, and erosion are illustrated from northern New Mexico (USA) landscapes, where long-term studies have recently documented all of these disturbance processes. For example, environmental stress, operating on individual trees, can cause tree death that is amplified by insect mortality agents to propagate to patch and then landscape or even regional-scale forest dieback. Severe drought and unusual warmth in the southwestern USA since the late 1990s apparently exceeded species-specific physiological thresholds for multiple tree species, resulting in substantial vegetation mortality across millions of hectares of woodlands and forests in recent years. Predictions of forest dieback across spatial scales are constrained by uncertainties associated with: limited knowledge of species-specific physiological thresholds; individual and site-specific variation in these mortality thresholds; and positive feedback loops between rapidly-responding insect herbivore populations and their stressed plant hosts, sometimes resulting in nonlinear “pest” outbreak dynamics. Fire behavior also exhibits nonlinearities across spatial scales, illustrated by changes in historic fire regimes where patch-scale grazing disturbance led to regional-scale collapse of surface fire activity and subsequent recent increases in the scale of extreme fire events in New Mexico. Vegetation dieback interacts with fire activity by modifying fuel amounts and configurations at multiple spatial scales. Runoff and erosion processes are also subject to scale-dependent threshold behaviors, exemplified by ecohydrological work in semiarid New Mexico watersheds showing how declines in ground surface cover lead to non-linear increases in bare patch connectivity and thereby accelerated runoff and erosion at hillslope and watershed scales. Vegetation dieback, grazing, and fire can change land surface properties and cross-scale hydrologic connectivities, directly altering ecohydrological patterns of runoff and erosion. The interactions among disturbance processes across spatial scales can be key drivers in ecosystem dynamics, as illustrated by these studies of recent landscape changes in northern New Mexico. To better anticipate and mitigate accelerating human impacts to the planetary ecosystem at all spatial scales, improvements are needed in our conceptual and quantitative understanding of cross-scale interactions among disturbance processes.  相似文献   

8.
Plant-parasitic nematodes (PPN) are harmful pests that have become a severe threat to crop production worldwide. Diversity of PPN at horizontal and spatial scales influence the effectiveness of control strategies. This study evaluated the vertical distribution of PPN genera at 0 cm to 30 cm and 30 cm to 60 cm in sweet potato fields in Central, Manyatta, and Nembure regions of Embu County, Kenya. A significant region × depth interaction was observed for Tylenchus. For all the other nematode genera, there were no significant variations in the abundance at 0 cm to 30 cm and 30 cm to 60 cm depths. However, Helicotylenchus, Meloidogyne, and Scutellonema occurred in greater numbers at both depths in all regions. Shannon and Simpson diversity indices were higher at 0 cm to 30 cm depth while Pielou’s evenness was similar at both depths in the three regions. Diversity partitioning of genus richness, Shannon, and Simpson diversities across all regions at 0 cm to 30 cm, indicated that β component contributed 61.9%, 35.6%, and 22.6% of γ diversity, respectively. Coinertia analysis indicated a significant covariation between nematode genera and soil properties. The results show that management of PPN in sweet potato fields should be targeted at soil depths that are not less than 60 cm.  相似文献   

9.
Pollinating bees develop foraging circuits (traplines) to visit multiple flowers in a manner that minimizes overall travel distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive power for empirical data for which the model has not been specifically developed, and here the model is shown to be consistent with observations from different research groups made at several spatial scales and using multiple configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their environment, and test several previously unexplored predictions. We find that the model predicts accurately 1) the increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2) that bees cannot establish stable optimal traplines for all spatial configurations of rewarding flowers; 3) the observed trade-off between travel distance and prioritization of high-reward sites (with a slight modification of the model); 4) the temporal pattern with which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5) the instability of visitation schedules in some spatial configurations of flowers; 6) the observation that in some flower arrays, bees'' visitation schedules are highly individually different; 7) the searching behaviour that leads to efficient location of flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and refine our understanding about how small-brained insects develop a representation of space and use it to navigate in complex and dynamic environments.  相似文献   

10.
动物生境选择研究中的时空尺度   总被引:17,自引:0,他引:17  
张明海  李言阔 《兽类学报》2005,25(4):395-401
尺度研究已成为生态学上的一个重要概念和研究热点,但是在动物生境选择的研究中尚未引起足够的重视。动物的生境选择包括多层次的判别和一系列等级序位,在各个尺度和水平上具有不同的特征和机制,受到时空尺度的严格限定。繁殖期的时间限制、社群压力、环境变化、动物生理需求的变化决定了动物生境选择的时间制约性;而生境资源的斑块化分布、功能生境之间的相互作用决定了动物生境选择的空间制约性。研究者对时间和空间尺度的选取与应用会直接影响到生境选择研究结果的科学性和实效性。本文从动物生境选择的时空制约性出发,分析了生境选择研究中时间尺度的重要性,叙述了国内外生境选择研究中常见的研究尺度,强调了多尺度研究和长期生态研究的必要性,尺度的选择应该成为生境选择研究的起点和基础。  相似文献   

11.
Vertical distribution of five plant-parasitic nematodes was examined in two north Florida soybean fields in 1987 and 1988. Soil samples were collected from 0-15 cm, 15-30 cm, and 30-45 cm deep at each site. Soil at the three depths consisted of approximately 96% sand. More than 50% of Belonolaimus longicaudatus population densities occurred in the upper 15-cm soil layer at planting, but the species became more evenly distributed through the other depths as the season progressed. Criconemella sphaerocephala was evenly distributed among the three depths in one field but was low (< 20% of the total density) in the upper 15 cm at a second site. Maximum population densities of Pratylenchus brachyurus were observed at 15-30 cm on most sampling dates. Vertical distributions of Meloidogyne incognita and Paratrichodorus minor were erratic and showed seasonal variation. A diagnostic sample from the upper 0-15 cm of these soybean fields revealed only a minority of the populations of most of the phytoparasitic species present.  相似文献   

12.
13.
Estuaries and coastal wetlands are critical transition zones (CTZs) that link land, freshwater habitats, and the sea. CTZs provide essential ecological functions, including decomposition, nutrient cycling, and nutrient production, as well as regulation of fluxes of nutrients, water, particles, and organisms to and from land, rivers, and the ocean. Sediment-associated biota are integral to these functions. Functional groups considered essential to CTZ processes include heterotrophic bacteria and fungi, as well as many benthic invertebrates. Key invertebrate functions include shredding, which breaks down and recycles organic matter; suspension feeding, which collects and transports sediments across the sediment–water interface; and bioturbating, which moves sediment into or out of the seabed. In addition, macrophytes regulate many aspects of nutrient, particle, and organism dynamics above- and belowground. Animals moving within or through CTZs are vectors that transport nutrients and organic matter across terrestrial, freshwater, and marine interfaces. Significant threats to biodiversity within CTZs are posed by anthropogenic influences; eutrophication, nonnutrient pollutants, species invasions, overfishing, habitat alteration, and climate change affect species richness or composition in many coastal environments. Because biotic diversity in marine CTZ sediments is inherently low whereas their functional significance is great, shifts in diversity are likely to be particularly important. Species introductions (from invasion) or loss (from overfishing or habitat alteration) provide evidence that single-species changes can have overt, sweeping effects on CTZ structure and function. Certain species may be critically important to the maintenance of ecosystem functions in CTZs even though at present there is limited empirical evidence that the number of species in CTZ sediments is critical. We hypothesized that diversity is indeed important to ecosystem function in marine CTZs because high diversity maintains positive interactions among species (facilitation and mutualism), promoting stability and resistance to invasion or other forms of disturbance. The complexity of interactions among species and feedbacks with ecosystem functions suggests that comparative (mensurative) and manipulative approaches will be required to elucidate the role of diversity in sustaining CTZ functions. Received 25 February 2000; accepted 31 January 2001.  相似文献   

14.
We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon–Wiener diversity index H was higher for Bacteria (1.92–4.03) than for Archaea (0.99–1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.  相似文献   

15.
16.
Ecological community patterns are often extremely complex and the factors with the greatest influence on community structure have yet to be identified. In this study we used the elements of metacommunity structure (EMS) framework to characterize the metacommunities of freshwater nematodes in 16 European lakes at four geographical scales (radius ranging from 80 m to 360 km). The site characteristics associated with site scores indicative of the structuring gradient were identified using Spearman rank correlations. The metacommunities of the 174 nematode species included in this analysis mostly had a coherent pattern. The degree of turnover increased with increasing scale. Ordination scores correlated with geographical variables on the larger scales and with the trophic state index on a regional scale. The association of the structuring gradient with spatial variables and the scale-dependent increase in turnover showed that nematode dispersal was limited. The different metacommunity patterns identified at the increasing geographical scales suggested different, scale-related mechanisms of species distribution, with species sorting dominating on smaller and mass effects on larger geographical scales.  相似文献   

17.
This study examined the importance of habitat heterogeneity on the avian community composition, and investigated the scale at which species abundances respond to habitat variables. The study was conducted within a diverse landscape matrix of a shaded coffee region in Mexico. To detect at which characteristic spatial scale different species and foraging guilds respond most strongly we analyzed the effect of plot-, patch- and landscape-level variables at different spatial extent (i.e., different kilometer radii) on species composition and foraging guilds. We used redundancy analysis to identify species–environment correlations, and to identify predictor variables that best explained the bird community structure, quantified the influence of plot-, patch- and landscape-level variables on the bird community composition. In addition, we used the 4th-corner method to detect significant relationships between the dietary guilds and plot-, patch- and landscape-level variables. We recorded 12,335 individuals of 181 bird species; 105 bird species were recorded foraging within the shaded coffee plantations. We found that plot- and landscape-level variables significantly explained the bird community composition best across all scales, and were significantly correlated with the abundance of the dietary guilds. In contrast, patch-level variables were less important. Habitat composition variables (i.e., coffee, forest and agricultural area) were among the most important predictors. Canopy structure was more important than other vegetation structure variables in explaining dietary guild structure. Hence, the maintenance of a heterogeneous landscape with a high-quality matrix within an agro-ecological region enhances bird conservation.  相似文献   

18.
Nematode population densities in field plots were estimated by collecting samples consisting of 12 soil cores. Plots encompassed a variety of plant hosts and sampling dates, and provided data on the population densities of seven species of plant-parasitic nematodes. Three separate samples were collected per plot on each sampling date to obtain estimates of the mean and variance of numbers for each species. For each nematode species, these estimates were used to derive the Taylor''s Power Law regression over plots having identical hosts and sampling dates. For some nematode species, comparisons of regression equations among different sampling dates on the same host revealed similarities in values of a and b from Taylor''s Power Law. Parameters of Taylor''s Power Law relationships were used to develop sampling plans and to obtain estimates of sample precision. Precision estimates from specific and general sampling plans are illustrated for Belonolaimus longicaudatus.  相似文献   

19.
Abstract: Considering habitat selection at multiple scales is essential to fully understand habitat requirements and management needs for wildlife species of concern. We used a hierarchical information-theoretic approach and variance decomposition techniques to analyze habitat selection using local-scale habitat variables measured in the field and landscape-scale variables derived with a Geographic Information System (GIS) for nesting greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB), Montana and Wyoming, USA, 2003–2007. We investigated relationships between habitat features that can and cannot be mapped in a GIS to provide insights into interpretation of landscape-scale—only GIS models. We produced models of habitat selection at both local and landscape scales and across scales, yet multiscale models had overwhelming statistical and biological support. Variance decomposition showed that local-scale measures explained the most pure variation (50%) in sage-grouse nesting-habitat selection. Landscape-scale features explained 20% of pure variation and shared 30% with local-scale features. Both local- and landscape-scale habitat features are important in sage-grouse nesting-habitat selection because each scale explained both pure and shared variation. Our landscape-scale model was accurate in predicting priority landscapes where sage-grouse nests would occur and is, therefore, useful in providing landscape context for management decisions. It accurately predicted locations of independent sage-grouse nests (validation R2 = 0.99) and showed good discriminatory ability with >90% of nests located within only 40% of the study area. Our landscape-scale model also accurately predicted independent lek locations. We estimated twice the amount of predicted nesting habitat within 3 km of leks compared to random locations in the PRB. Likewise we estimated 1.8 times more predicted nesting habitat within 10 km of leks compared to random locations. These results support predictions of the hotspot theory of lek placement. Local-scale habitat variables that cannot currently be mapped in a GIS strongly influence sage-grouse nest-site selection, but only within priority nesting habitats defined at the landscape scale. Our results indicate that habitat treatments for nesting sage-grouse applied in areas with an unsuitable landscape context are unlikely to achieve desired conservation results.  相似文献   

20.
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号