首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In stomata guard cells of sugar beet, variation in the number of chloroplasts was studied in successive generations: (1) hybrid generation; (2) generation yielded by uniparental apozygotic seed reproduction; (3) generation obtained after seed treatment with a colchicine solution; (4) generation obtained after seed treatment with 5-azacytidine. As compared to hybrid generation, uniparental seed reproduction increases the average number of chloroplasts in stomata guard cells (from 13.5 to 15.0) and decreases distribution variance of this trait by a factor of 3 to 4. Colchicine increases both average number of chloroplasts in stomata guard cells (from 13.5 to 18.2) and distribution variance (about twice). 5-Azacytindine reduces the number of chloroplasts in cells (from 15.0 to 12.9) but enhances distribution variance (about 1.5 times). Variation in the number of chromosomes in stomata cells is related to myxoploidy in meristem tissue, on the one hand, and to the rate of cell division, on the other. Uniparental seed reproduction is suggested to enhance the number of organelles per cell due to high myxoploidy in cell populations. Colchicine blocks spindle division and sharply increases the level of myxoploidy in cell populations and the number of organelles per cell. 5-Azacytidine hypomethylates chromosome DNA, increases the rate of cell divisions, and reduces the number of organelles per cell. The described changes in the number of chloroplasts are inherited in cell lineage (cell hereditary memory) and successive sporophyte generations.  相似文献   

2.
Diploid sugar beet plants demonstrate a broad variability of the number of chloroplasts in stoma guard cells, which is related to myxoploidy of cell populations in leaf apical meristems (epigenomic variability). In addition to random organelle segregation between daughter cells, this variability is affected by factors disrupting the mitotic cycle: (1) plant treatment with a mitotic poison, such as colchicine; (2) duration of the life cycle of a plant; the variability in second-year plants is greater than in first-year ones; (3) the mode of plant reproduction; the variability in inbred plants is greater than in the initial population. Treatment of germinating seeds with a diluted colchicine solution increases the number of organelles in cells in the myxoploid generation (generation C0) and the variance of the distributions in the first vegetation year. The variability in the organelle number in stoma cells correlates with that in maternal meristem cells. It is concluded that the epidermal cell monolayer (including stoma guard cells) keeps record of the epigenomic and epiplastome variability in meristem cells. The variability of the number of chloroplasts in stoma guard cells is approximated by binomials with negative powers.  相似文献   

3.
Diploid sugar beet plants demonstrate a broad variability of the number of chloroplasts in stomata guard cells, which is related to mixoploidy of cell populations in leaf apical meristems (epigenomic variability). In addition to random organelle segregation between daughter cells, this variability is affected by factors disrupting the mitotic cycle: (1) plant treatment with a mitotic poison, such as colchicine; (2) duration of the life cycle of a plant; the variability in second-year plants is greater than in first-year ones; (3) the mode of plant reproduction; the variability in inbred plants is greater than in the initial population. Treatment of germinating seeds with a diluted colchicine solution increases the number of organelles in cells in the myxoploid generation (generation C0) and the variance of the distributions in the first vegetation year. The variability in the organelle number in stomata cells correlates with that in maternal meristem cells. It is concluded that the epidermal cell monolayer (including stomata guard cells) keeps record of the epigenomic and epiplastome variability in meristem cells. The variability of the number of chloroplasts in stomata guard cells is approximated by binomials with negative powers.  相似文献   

4.
Osmoregulation in opening stomata of epidermal peels from Vicia faba L. leaves was investigated under a variety of experimental conditions. The K+ content of stomatal guard cells and the starch content of guard cell chloroplasts were examined with cobaltinitrite and iodine-potassium iodide stains, respectively; stomatal apertures were measured microscopically. Red light (50 micromoles per square meter per second) irradiation caused a net increase of 3.1 micrometers in aperture and a decrease of −0.4 megapascals in guard cell osmotic potential over a 5 hour incubation, but histochemical observations showed no increase in guard cell K+ content or starch degradation in guard cell chloroplasts. At 10 micromoles per square meter per second, blue light caused a net 6.8 micrometer increase in aperture over 5 hours and there was a substantial decrease in starch content of chloroplasts but no increase in guard cell K+ content. At 25 micromoles per square meter per second of blue light, apertures increased faster (net gain of 5.7 micrometers after 1 hour) and starch content decreased. About 80% of guard cells had a higher K+ content after 1 hour of incubation but that fraction decreased to 10% after 5 hours. In the absence of KCl in the incubation medium, stomata opened slowly in response to 25 micomoles per square meter per second of blue light, without any K+ gain or starch loss. In dual beam experiments, stomata irradiated with 50 micomoles per square meter per second of red light for 3 hours opened without detectable starch loss or K+ gain; addition of 25 micomoles per square meter per second of blue light caused a further net gain of 4.4 micometers in aperture accompanied by substantial K+ uptake and starch loss. Comparison of K+ content in guard cells of opened stomata in epidermal peels with those induced to open in leaf discs showed a substantially higher K+ content in the intact tissue than in isolated peels. These results are not consistent with K+ (and its counterions) as the universal osmoticum in guard cells of open stomata under all conditions; rather, the data point to sugars arising from photosynthesis and from starch degradation as additional osmotica. Biochemical confirmation of these findings would indicate that osmoregulation during stomatal opening is the result of three key metabolic processes: ion transport, photosynthesis, and sugar metabolism.  相似文献   

5.
Without the continuity of chloroplasts there would be no higher life. Chloroplast reproduction and continuity can be studied in the guard cells of stomata, utilizing the result of reproduction, viz., the number of chloroplasts. An annotated list of such numbers from 261 families of spermatophytes is provided. For each family and many subfamilies or tribes are given the numbers of genera and species investigated as well as the ranges and medians of 1909 generic and 6161 specific chloroplast numbers, predominantly from my own countings. The driving forces behind the reproduction and continuity of chloroplasts are reviewed and discussed in the light of some figures of the list and other evidence. The results support the hypothesis that nuclear DNA replication paves the way for chloroplast reproduction and that the nuclear DNA amount is instrumental in ensuring the continuity of chloroplasts throughout meristematic cell successions.  相似文献   

6.
The effects of environmental parameters on the blue light response of stomata were studied by quantifying transient increases in stomatal conductance in Commelina communis following 15 seconds by 0.100 millimole per square meter per second pulses of blue light. Because conductance increases were not observed following red light pulses of the same or greater (30 seconds by 0.200 millimole per square meter per second) fluences, the responses observed could be reliably attributed to the specific blue light response of the guard cells, rather than to guard cell chlorophyll. In both Paphiopedilum harrisianum, which lacks guard cell chloroplasts, and Commelina, the blue light response was enhanced by 0.263 millimole per square meter per second continuous background red light. Thus, the blue light response and its enhancement do not require energy derived from red-light-driven photophosphorylation by the guard cell chloroplasts. In Commelina, reduction of the intercellular concentration of CO2 by manipulation of ambient CO2 concentrations resulted in an enhanced blue light response. In both Commelina and Paphiopedilum, the blue light response was decreased by an increased vapor pressure difference. The magnitude of blue-light-specific stomatal opening thus appears to be sensitive to environmental conditions that affect the carbon and water status of the plant.  相似文献   

7.
Fluorescence microscopy indicated that chlorophyll was absentfrom epidermal and guard cells overlying all white areas andgreen areas (of certain leaves) in variegated leaves of Pelargoniumzonale, cv. Chelsea Gem. Stomata with chlorophyll-free guardcells, in general, responded normally to light and CO2 as gaugedby direct measurements of stomatal aperture and by transpirationalwater loss studies, although stomata from white regions of variegatedleaves were more reluctant to open than stomata from green regionsof the leaves. Thus, functional stomata without guard cell chloroplastshave been discovered in another genus, namely Pelargonium, besidesthat originally discovered in Paphiopedilum. When stomata withchlorophyll-free guard cells opened, K+ accumulated in the guardcells. This indicates that chloroplasts are not essential forthe normal functioning of stomata and that the energy sourcefor driving stomatal movements can come from sources other thanphotophosphorylation. Key words: Guard cell chloroplasts, Leaf chimera, Pelargonium, Stomata  相似文献   

8.
Some cytological and morphological features of haploid and dihaploid winter rapó plants obtained via the anther cultivation approach have been studied. It was shown that in haploid plants the number of chloroplasts in stomatal guard cells, the size of the stomatal guard cells themselves were much smaller, and the number of stomata per square unit was greater than in doubled haploids and diploids. Haploids were also characterized by smaller sizes of petals and anthers and, in general, a smaller flower as compared to dihapliods and diploids.  相似文献   

9.
In Arabidopsis thaliana the PALE CRESS (PAC) gene product is required for both chloroplast and cell differentiation. Transgenic Arabidopsis plants expressing a translational fusion of the N-terminal part of the PAC protein harboring the complete plastid-targeting sequence and the green fluorescent protein (GFP) exhibit high GFP fluorescence. Detailed analyses based on confocal imaging of various tissues and cell types revealed that the PAC-GFP fusion protein accumulates in chloroplasts of mature stomatal guard cells. The GFP fluorescence within the guard cell chloroplasts is not evenly distributed and appears to be concentrated in suborganellar regions. GFP localization studies demonstrate that thin tubular projections emanating from chloroplasts and etioplasts often connect the organelles with each other. Furthermore, imaging of non-green and etiolated tissue further revealed that GFP fluorescence is present in proplastids, etioplasts, chromoplasts, and amyloplasts. Even photobleaching of carotenoid-free plastids does not affect PAC-GFP accumulation in the organelles of the guard cells indicating that the protein translocation machinery is functional in all types of plastids. The specific accumulation of GFP in guard cell chloroplasts, their tubular connections, the translocation of the precursor polypeptide into the different types of organelles, as well as the use of a plastid-targeted GFP protein as a versatile marker is discussed in the context of previously described observations.  相似文献   

10.
A role of the guard cell chloroplasts in the CO2 response of stomata was investigated through a comparison of the leaf gas exchange characteristics of two closely related orchids: Paphiopedilum harrisianum, which lacks guard cell chloroplasts and Phragmipedium longifolium, which has chlorophyllous guard cells. Leaves of both species had an apparent quantum yield for assimilation of about 0.05, with photosynthesis saturating at 0.300 to 0.400 millimoles per square meter per second. CO2 curves were obtained by measuring steady-state assimilation and stomatal conductance under 0.180 or 0.053 millimoles per square meter per second white light, or darkness, at 0 to 400 microliters per liter ambient CO2. The response of assimilation to changes in CO2 was similar in the two species, but the response of conductance was consistently weaker in Paphiopedilum than in Phragmipedium. The data suggest involvement of guard cell chloroplasts in the stomatal response to CO2 and in the coupling of assimilation and conductance in the intact leaf.  相似文献   

11.
ADP-glucose pyrophosphorylase catalyzes the regulated step of starch bioynthesis in mesophyll chloroplasts. This enzyme is activated by a high ratio of the concentrations of 3-P-glycerate to inorganic phosphate (Pi) in light. In contrast, starch in guard cell chloroplasts is degraded when stomata open, which usually occurs in light. We have investigated the biochemical causes for this contrasting phenomenon.

Vicia faba L. leaflets were sampled in darkness and after various periods of illumination. The samples were quick-frozen and freeze-dried. Guard cells and other cells were dissected out, weighed, and assayed for ADP-glucose pyrophosphorylase activity, 3-P-glycerate, and Pi. In the pyrophosphorolytic direction, ADP-glucose pyrophosphorylase specific activity in guard cells was 2.7 moles per kilogram protein per hour, which was comparable to the values obtained for palisade and spongy cells. The specific activity in epidermal cells was 4-fold lower. Under our assay conditions, the guard cell enzyme activity was 5-fold higher in the presence of 3-P-glycerate and 5-fold lower with Pi (i.e. similar to the results obtained with extracts of fresh leaflet). During three minutes of illumination, 3-P-glycerate concentration in palisade cells increased 2.5-fold to 10 millimoles per kilogram dry mass. The concentration of 3-P-glycerate in guard cells was 20-fold lower and unaffected by illumination. The concentration of Pi was approximately 17 millimoles per kilogram dry mass in palisade cells, but was 10-fold higher in guard cells. These overall cellular Pi concentrations were unaffected by illumination. We conclude that starch biosynthesis in guard cells is not activated by light because of the low and constant 3-P-glycerate concentration there. We interpret this last to be a consequence of the absence of the photosynthetic carbon reduction pathway in chloroplasts of these cells.

  相似文献   

12.
Melis A  Zeiger E 《Plant physiology》1982,69(3):642-647
Chlorophyll fluorescence transients from mesophyll and guard cell chloroplasts of variegated leaves from Chlorophytum comosum were compared using high resolution fluorescence spectroscopy. Like their mesophyll counterparts, guard cell chloroplasts showed the OPS fluorescence transient indicating the operation of the linear electron transport and the possible generation of NADPH in these organelles. They also showed a slow fluorescence yield decrease, equivalent to the MT transition in mesophyll, suggesting the formation of the high energy state and photophosphorylation. Unlike the mesophyll chloroplasts, the fluorescence from guard cell chloroplasts lacked the increment of the SM transition, indicating that the two types of chloroplasts have some metabolic differences. The presence of CO2 (supplied as bicarbonate, pH 6.7) specifically inhibited the MT-equivalent transition while its absence accelerated it. These observations constitute the first specific evidence of a guard cell chloroplast response to CO2. Control of photosynthetic ATP levels in the guard cell cytoplasm by CO2 may provide a mechanism regulating the availability of high energy equivalents at the guard cell plasmalemma, thus affecting stomatal opening.  相似文献   

13.
High-resolution images of the chlorophyll fluorescence parameter Fq'/Fm' from attached leaves of commelina (Commelina communis) and tradescantia (Tradescantia albiflora) were used to compare the responses of photosynthetic electron transport in stomatal guard cell chloroplasts and underlying mesophyll cells to key environmental variables. Fq'/Fm' estimates the quantum efficiency of photosystem II photochemistry and provides a relative measure of the quantum efficiency of non-cyclic photosynthetic electron transport. Over a range of light intensities, values of Fq'/Fm' were 20% to 30% lower in guard cell chloroplasts than in mesophyll cells, and there was a close linear relationship between the values for the two cell types. The responses of Fq'/Fm' of guard and mesophyll cells to changes of CO2 and O2 concentration were very similar. There were similar reductions of Fq'/Fm' of guard and mesophyll cells over a wide range of CO2 concentrations when the ambient oxygen concentration was decreased from 21% to 2%, suggesting that both cell types have similar proportions of photosynthetic electron transport used by Rubisco activity. When stomata closed after a pulse of dry air, Fq'/Fm' of both guard cell and mesophyll showed the same response; with a marked decline when ambient CO2 was low, but no change when ambient CO2 was high. This indicates that photosynthetic electron transport in guard cell chloroplasts responds to internal, not ambient, CO2 concentration.  相似文献   

14.
McAdam SA  Brodribb TJ 《The Plant cell》2012,24(4):1510-1521
Stomatal guard cells regulate plant photosynthesis and transpiration. Central to the control of seed plant stomatal movement is the phytohormone abscisic acid (ABA); however, differences in the sensitivity of guard cells to this ubiquitous chemical have been reported across land plant lineages. Using a phylogenetic approach to investigate guard cell control, we examined the diversity of stomatal responses to endogenous ABA and leaf water potential during water stress. We show that although all species respond similarly to leaf water deficit in terms of enhanced levels of ABA and closed stomata, the function of fern and lycophyte stomata diverged strongly from seed plant species upon rehydration. When instantaneously rehydrated from a water-stressed state, fern and lycophyte stomata rapidly reopened to predrought levels despite the high levels of endogenous ABA in the leaf. In seed plants under the same conditions, high levels of ABA in the leaf prevented rapid reopening of stomata. We conclude that endogenous ABA synthesized by ferns and lycophytes plays little role in the regulation of transpiration, with stomata passively responsive to leaf water potential. These results support a gradualistic model of stomatal control evolution, offering opportunities for molecular and guard cell biochemical studies to gain further insights into stomatal control.  相似文献   

15.
G. Schmiedel  E. Schnepf 《Planta》1980,147(5):405-413
In the caulonema tip cells of Funaria hygrometrica, chloroplasts, mitochondria, and dictyosomes have differences in structure which are determined by cell polarity. In contrast to the slowly growing chloronema tip cells the apical cell of the caulonema contains a tip body. Colchicine stops tip growth; it causes the formation of subapical cell protrusions, redistribution of the plastids, and a loss of their polar differentiation. Cytochalasin B inhibits growth and affects the position of cell organelles. After treatment with ionophore A23 187, growth is slower and shorter and wider cells are formed. D2O causes a transient reversion of organelle distribution but premitotic nuclei are not dislocated. In some tip cells the reversion of polarity persists; they continue to grow with a new tip at their base. During centrifugation, colchicine has only a slight influence on the stability of organelle anchorage. The former polar organization of most cells is restored within a few hours after centrifugation, and the cells resume normal growth. In premitotic cells the nucleus and other organelles cannot be retransported, they often continue to grow with reversed polarity. Colchicine retards the redistribution of organelles generally and increases the number of cells that form a basal outgrowth. The interrelationship between the peripheral cytoplasm and the nucleus and the role of microtubules in maintaining and reestablishing cell polarity are discussed.Abbreviations DMSO dimethylsulfoxide - CB cytochalasin B Dedicated to Prof. Dr. A. Pirson on the occasion of his 70. birthday  相似文献   

16.
Stomata of various sizes are produced on the primary root of Ceratonia siliqua L. Most are generated during embryogenesis, prior to seed desiccation. They can be detected on the dry embryo in a wide zone just above the root tip. Initially, large stomata are formed. These have the ability to induce divisions of their neighbouring cells, creating particular cell patterns around them. Later, small perigenous stomata are generated. As the root grows following seed germination, the stomatal zone overlaps with that of the root hairs. Although root stomata of C. siliqua undergo a structural differentiation that seems almost identical to that of the elliptical stomata formed on leaves, they are unable to move and remain permanently open. Polarizing microscopy of fully differentiated stomata and young stomata at the stage of stomatal pore formation revealed deposition of radial cellulose microfibril systems on their periclinal walls. However, these systems were less developed than those on leaf stomata, a feature that might be responsible for their inactivity. Besides, plastids of the root guard cells (GCs) do not differentiate into chloroplasts but function solely as amyloplasts. Root stomata have a short life span. During rapid and intense root growth, GCs cannot keep pace with the elongation of their neighbouring rhizodermal cells. They therefore split in their mid-region, transversely to the stoma axis. The two parts of the transversely torn stoma are dragged apart and a large opening is formed on the root surface, just above the substomatal cavity. The root stomata, together with these openings, may facilitate increased gaseous exchange during respiration and/or an increased transfer of some nutrients and water in the rapidly growing primary root.  相似文献   

17.
1. By means of cell separation, pectinase cell separation and routine paraffin method, we studied the cell types of leaves of wheat, Nongda 183 and several other varieties. 2. We observed in all the cell types, the presence of mitochondria, spherosomes, plastids or chloroplasts, though the morphology and distribution of these organelles vary to a certain extent they do not interfere with the recognition of these cell types. 3. The plastids and mitochondria of the long cells in the epidermis are of various forms. Most of these organelles are distributed in the portion of the cell away from the leaf surface. 4. In each one of the guard cells, there are many morphologically stable, pale-colored but shining plastids. They are peculiar to the guard cells and cannot be found in any other cell types. 5. The bulliform cells are in ball and socket connection with the mesophyll cells underneath, while the organelles of bulliform cells are concentrated at the surface of the socket. 6. The number of the chloroplasts in the mesophyll cells is not quite constant. From the external morphology and the distribution of the chloroplasts, the mesophyll cells can be divided into, at least, two morphological types. 7. The outer bundle sheath cell is divided into chloroplast-prominent and mitochondria-prominent halves. This peculiar structure of the cell reveals the function and the transitional position it occupies in the leaf. This is a good example of unity of function and structure. 8. The inner bundle sheath cells can be recognized readily by the presence of prominent pits in the walls. The protoplasmic streaming of these cells is very active. Plastids and mitochondria can be seen clearly. 9. The importance of the cell types of these specialized cells and their variously shaped and distributed organelles is discussed.  相似文献   

18.
During the growth of beet leaves from 2 to 3 to 25 to 30 centimeters, the leaf cells increase in size, the average number of chloroplasts per cell increases from 11 to 65 and the amount of chloroplast DNA per cell increases from 1100 to 1900 plastome copies. The average number of copies of the plastome per chloroplast decreases from 104 in 2 to 3-centimeter leaves to 29 in 25 to 30-centimeter leaves during a period when the chloroplasts undergo two to three rounds of division and increase diameter from 1.5 to 4.9 micrometers. This result is at variance with previously published studies of beet chloroplasts but agrees with the conclusions reached in more recent studies of pea and spinach and wheat leaf cell expansion.  相似文献   

19.
Abstract Light and fluorescence microscopy studies indicated that chlorophyll was absent from the guard cells of the lady slipper orchids, Paphiopedilum insigne (Wall.) Pfitz, P. insigne (hybrid), P. venustum (Wall.) Pfitz and P. harrisseanum Hort. In the guard cells of P. aureum hyeanum Hort., however, very slight red fluorescence suggested that chlorophyll and hence chloroplasts were present. Ultrastructural studies of the lower epidermis of P. insigne (hybrid) confirmed the absence of chloroplasts in guard and epidermal cells although plastids of an unusual structure were found in these cells. In fully developed epidermal cells the plastids contained large amounts of a fibrous, possibly proteinaceous substance, spherical, lightly staining vesicles and an electron-dense material located in reticulate and non-reticulate regions. Additionally, latticed crystalline inclusions and plasto-globuli were occasionally observed in the epidermal cell plastids. In plastids of fully developed guard cells the fibrous material, starch and plastoglobuli were present. From the earliest stages of development of the epidermal tissue starch was present in both epidermal cell and guard cell plastids. At maturity, however, starch had accumulated to greater levels in the guard cell plastids and had entirely disappeared in the epidermal cell plastids. In differentiating epidermal tissue, plasmodesmata were found between neighbouring epidermal cells and between guard and epidermal cells. At maturity, plasmodesmata between guard and epidermal cells were not observed. Mitochondria were particularly abundant in guard cells. Large oil drops developed in guard and epidermal cells, being especially abundant in the former at maturity. Our results confirm the observations of Nelson & Mayo (1975) that certain lady slipper orchids possess functional stomata the guard cells of which do not contain chloroplasts.  相似文献   

20.
In the evergreen leaves of Quercus suber, stomata play a major role in adaptation to drought and temperature stress. The leaf is of zygostomic type and has about 430 stomata per square milimeter of abaxial leaf surface. The stomatal complex is of the anomocytic type. The guard cells protrude from the epidermal plane. The guard cell nucleus contains heterochromatin in small granules. The guard cell cytoplasm is characterised by a large number of well developed mitochondria, amyloplasts with stroma and grana, and a well developed cytoskeleton with a cortical array of microtubules oriented pa railed to the slit axis that persist even in mature cells. Guard cell walls are asymmetrically thickened and devoid of plasmodesmata. No area of cell walls was free of cuticle or covered by a thin cuticular layer and apparently no area of limited cuticular development provides evaporation when the stomata are closed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号