首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is a potent allosteric activator of the ATP-dependent phosphofructokinase (PFK) in eukaryotes. Based on the sequence homology between rabbit muscle PFK and two bacterial PFKs and the crystal structures of the latter, Ser(530), Arg(292) and His(662) of the rabbit enzyme are implicated as binding sites for Fru-2,6-P(2). We report here the effects of three mutations, S530D, R292A, and H662A on the activation of rabbit muscle PFK by Fru-2,6-P(2). At pH 7.0 and the inhibitory concentrations of ATP, the native enzyme gives a classic sigmoidal response to changes in Fru-6-P concentration in the absence of Fru-2,6-P(2) and a nearly hyperbolic response in the presence of the activator. Under the same conditions, no activation was seen for S530D. On the other hand, H662A can be activated but requires a 10-fold or higher concentration of Fru-2,6-P(2). Limited activation was observed for mutant R292A. A model illustrating the sites for recognition of Fru-2,6-P(2) in rabbit muscle PFK as well as the mechanism of allosteric activation is proposed.  相似文献   

4.
5.
The phosphofructokinase genes of yeast evolved from two duplication events   总被引:7,自引:0,他引:7  
Yeast phosphofructokinase (PFK) is an octameric enzyme composed of four alpha-subunits and four beta-subunits, encoded by the genes PFK1 and PFK2, respectively. PFK1 was mapped 23 cM distal to ADE3 on chromosome VII, and PFK2 30 cM proximal to RNA1 on chromosome XIII. The entire nucleotide sequences for the two genes were obtained by sequencing both DNA strands. Only one major open reading frame was found for each gene. They encode 987 aa for PFK1 (Mr 107,984) and 959 aa for PFK2 (Mr 104,589). Both genes show a biased codon usage. The deduced amino acid sequences showed: (i) 20% homology between the N- and the C-terminal halves of each subunit, (ii) 55% homology between the two subunits, and (iii) significant homologies to the PFK sequences from human and rabbit muscle (42%), Escherichia coli (34%), and Bacillus (36%). These data support the view that two gene duplication events occurred in the evolution of the yeast PFK genes. The first duplication event took place soon after the separation of prokaryotic and eukaryotic lineage and the second in Saccharomyces later in the phylogeny. Functional domains in the yeast subunits were deduced by comparison to the rabbit muscle enzyme.  相似文献   

6.
The nucleotide sequence of a full-length cDNA encoding phosphofructokinase (PFK) enzyme from the parasitic nematode Ascaris suum was determined. The entire sequence of 2,653 bases comprises a single open reading frame of 2,452 bases and a noncoding region of 201 bases after the stop codon. The mature protein contains 812 amino acids and has a molecular mass of 90,900 Da. The amino acid sequences of several peptides derived from the purified protein show excellent correspondence with the translated nucleotide sequence. Comparison of the amino acid sequence of the protein with those of 3 other worms as well as those of human, rabbit, and bacterial enzymes reveals highly conserved regions interrupted with stretches of lesser sequence similarity. Analyses of the subunit primary structure reveal, as in other eukaryotic PFKs, that the amino-terminal half is homologous to the carboxy-terminal half, supporting the hypothesis that the PFK gene evolved by duplication of the prokaryotic gene and that the allosteric sites arose by mutations at the catalytic site. The location of the phosphorylation site is unique and different compared with other PFKs and plays a key role in regulation of the enzyme activity. Structural motifs such as the putative substrate and effector binding domains and also the key amino acids involved therein are clearly identified by alignment of all the PFK protein sequences.  相似文献   

7.
Rabbit liver fructose-1,6-bisphosphatase (FDPase) can reversibly inactivate both rabbit muscle and rat liver phosphofructokinases (PFK) under appropriate conditions. The peptide factor which stabilizes rat liver PFK-L2 against thermal inactivation has now been found to protect both PFKs from inactivation by FDPase. Assay at high ATP (ca. 3 mM) is necessary to demonstrate these reversible changes. In addition, the activation of FDPase by liver cytosol, by oleate plus cytosol, or by oleate plus muscle PFK is lowere about 50% in the presence of peptide factor. These observations suggest an active participation of the peptide factor in regulation of liver glycolysis and gluconeogenesis.  相似文献   

8.
9.
The characterization of the gene encoding Leishmania donovani phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported. L. donovani has a single PFK gene copy per haploid genome that encodes a polypeptide with a deduced molecular mass of 53 988 and a pI of 9.26. The predicted amino acid sequence contains a C-terminal tripeptide that conforms to an established signal for glycosome targeting. L. donovani PFK showed most sequence similarity to inorganic pyrophosphate (PPi)-dependent PFKs, despite being ATP-dependent. It thereby resembles PFKs from other Kinetoplastida such as Trypanosoma brucei, Trypanoplasma borreli (characterized in this study), and a PFK found in Entamoeba histolytica. It exhibited hyperbolic kinetics with respect to ATP whereas the binding of the other substrate, fructose 6-phosphate, showed slight positive cooperativity. PPi, even at high concentrations, did not have any effect. AMP acted as an activator of PFK, shifting its kinetics for fructose 6-phosphate from slightly sigmoid to hyperbolic, and increasing considerably the affinity for this substrate, whereas GDP did not have any effect. Modelling studies and site-directed mutagenesis were employed to shed light on the structural basis for the AMP effector specificity and on ATP/PPi specificity among PFKs.  相似文献   

10.
We have discovered two different point mutations in a single codon of the X-linked androgen-receptor (AR) gene in two pairs of unrelated families who have complete androgen insensitivity (resistance) associated with different AR phenotypes in their genital skin fibroblasts. One mutation is a C-to-T transition at a CpG sequence near the 5' terminus of exon 6; it changes the sense of codon 773 from arginine to cysteine, ablates specific androgen-binding activity at 37 degrees C, and eliminates a unique KpnI site at the intron-exon boundary. The other mutation is a G-to-A transition that changes amino acid 773 to histidine and eliminates an SphI site. This mutant AR has a normal androgen-binding capacity at 37 degrees C but has a reduced affinity for androgens and is thermolabile in their presence. Transient transfection of COS cells with cDNA expression vectors yielded little androgen-binding activity at 37 degrees C from Arg773Cys and abundant activity with abnormal properties from Arg773His, thereby providing the pathogenicity of both sequence alterations. This conclusion coincides with the following facts about evolutionary preservation of the position homologous to Arg773 in the AR: it is occupied by Arg or lysine in the progesterone, glucocorticoid, and mineralocorticoid receptors, and it is within a 14-amino-acid region of their steroid-binding domains that share approximately 85% amino acid identity.  相似文献   

11.
The glycolytic enzyme phosphoglycerate mutase (PGAM) is a dimer, and mature human skeletal muscle contains almost exclusively the MM form of the enzyme, PGAM-M. In 1981, we identified a patient with PGAM-M deficiency, and three additional patients have since been described. All presented with exercise intolerance, cramps, and myoglobinuria. We report two new patients with PGAM-M deficiency and describe the molecular lesions in five patients--four African-Americans and one Caucasian. Three patients were homozygous for an identical G-to-A transition converting an encoded Trp to an in-frame stop codon (codon 78). A fourth patient was heterozygous for this mutation and also carried an A-to-C mutation converting Glu to Ala (codon 89). The fifth patient, the only Caucasian, was homozygous for a different point mutation, a C-to-T mutation, converting Arg to Trp (codon 90).  相似文献   

12.
Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis   总被引:1,自引:1,他引:0  
We have undertaken a study of phosphofructokinase (PFK; E.C. 2.7.1.11) in the yeast Kluyveromyces lactis. Like other eukaryotic PFKs, the K. lactis enzyme is activated by the allosteric effectors AMP and fructose-2,6-bisphosphate. PFK activity is induced in cells grown on glucose as compared to ethanol-grown cells, in contrast to the constitutive expression of PFK in Saccharomyces cerevisiae. We show here that phosphofructokinase of the yeast K. lactis is composed of two non-identical types of sub-units, encoded by the genes KIPFK1 and KIPFK2. We have cloned and sequenced both genes. KIPFK1 and KIPFK2 encode the α- and the β-PFK subunits with deduced molecular weights of 109.336 Da and 104.074Da, respectively. Sequence analysis indicates that the genes evolved from a double duplication event. Null mutants in either of the genes lack detectable PFK activity in vitro and the respective subunits cannot be detected on Western blots. In contrast to the situation in S. cerevisiae, Klpfk1 Klpfk2 double mutants retain the ability to grow on glucose. However. Klpfk2 mutants and the double mutants do not grow on glucose, when respiration is blocked. These data suggest that the pentose phosphate pathway and respiration play a substantial role in glucose utilization by K. lactis. The K. lactis PFK genes can be expressed independently in S. cerevisiae and each of them complements the glucose-negative phenotype of pfk1 pfk2 double deletion mutants in this yeast. Expression of both K. lactis PFK genes simultaneously in S. cerevisiae pfk double deletion mutants complements for PFK activity. However, expression of a combination of PFK genes from K. lactis and S. cerevisiae does not lead to the production of a functional enzyme.  相似文献   

13.
The structure of the 60 kDa pyrophosphate (PP(i))-dependent phosphofructokinase (PFK) from Borrelia burgdorferi has been solved and refined (R(free) = 0.243) at 2.55 A resolution. The domain structure of eubacterial ATP-dependent PFKs is conserved in B. burgdorferi PFK, and there are three large insertions relative to E. coli PFK, including a helical domain containing a hairpin structure that interacts with the active site. Asp177, conserved in all PP(i) PFKs, negates the binding of the alpha-phosphate group of ATP and likely contacts the essential Mg(2+) cation via a water molecule. Asn181 blocks the binding of the adenine moiety of ATP. Lys203 hydrogen bonds to a sulfate anion that likely mimics PP(i) substrate binding.  相似文献   

14.
Efforts were directed to identify the specific mutations in the alpha-galactosidase A (alpha-Gal A) gene which cause Fabry disease in families of Japanese origin. By polymerase-chain-reaction-amplification of DNA from reverse-transcribed mRNA and genomic DNA, different point mutations were found in two unrelated Fabry hemizygotes. A hemizygote with classic disease manifestations and no detectable alpha-Gal A activity had a G-to-A transition in exon 1 (codon 44) which substituted a termination codon (TAG) for a tryptophan codon (TGG) and created an NheI restriction site. This point mutation would predict a truncated alpha-Gal A polypeptide, consistent with the observed absence of enzymatic activity and a classic Fabry phenotype. In an unrelated Japanese hemizygote who had an atypical clinical course characterized by late-onset cardiac involvement and significant residual alpha-Gal activity, a G-to-A transition in exon 6 (codon 301) resulted in the replacement of a glutamine for an arginine residue. This amino acid substitution apparently altered the properties of the enzyme such that sufficient enzymatic activity was retained to markedly alter the disease course. Identification of these mutations permitted accurate molecular heterozygote diagnosis in these families.  相似文献   

15.
Neurons that express neuronal nitric-oxide synthase (nNOS) are resistant to NO-induced neurotoxicity; however, the mechanism by which these neurons are protected is not clear. To identify proteins possibly involved in this process, we performed affinity chromatography with the nNOS PDZ domain, a N-terminal motif that mediates protein interactions. Using this method to fractionate soluble tissue extracts, we identified the muscle isoform of phosphofructokinase (PFK-M) as a protein that binds to nNOS both in brain and skeletal muscle. PFK-M interacts with the PDZ domain of nNOS, and nNOS-PFK-M binding can be competed by peptides that bind to the PDZ domain of nNOS. We found that nNOS is significantly associated with PFK-M in skeletal muscle because nNOS can be immunodepleted from cytosolic skeletal muscle extracts using an antibody directed against PFK-M. In brain, nNOS and PFK-M are both enriched in synaptosomes, and specifically, in the synaptic vesicle fraction, where they can interact. At the cellular level, PFK-M is enriched in neurons that express nNOS protein. As fructose-1, 6-bisphosphate, the product of PFK activity, is neuroprotective, the interaction of nNOS and PFK may contribute to neuroprotection of nNOS positive cells.  相似文献   

16.
We have previously cloned the gene encoding a pyrophosphate-dependent phosphofructokinase (PFK), designated PgPFK, from Porphyromonas gingivalis, an oral anaerobic bacterium implicated in advanced periodontal disease. In this study, recombinant PgPFK was purified to homogeneity, and biochemically characterized. The apparent K(m) value for fructose 6-phosphate was 2.2 mM, which was approximately 20 times higher than that for fructose 1,6-bisphosphate. The value was significantly greater than any other described PFKs, except for Amycolatopsis methanolica PFK which is proposed to function as a fructose 1,6 bisphosphatase (FBPase). The PgPFK appears to serves as FBPase in this organism. We postulate that this may lead to the gluconeogenic pathways to synthesize the lipopolysaccharides and/or glycoconjugates essential for cell viability.  相似文献   

17.
Developmental changes in heart and muscle phosphofructokinase isozymes   总被引:2,自引:0,他引:2  
Phosphofructokinase isozymes of fetal, neonatal, and adult rat heart and skeletal muscle were characterized by DEAE-cellulose chromatography, agarose gel electrophoresis, and immunodiffusion with specific antisera. The results of these studies indicate that in skeletal muscle and heart the levels of the major liver phosphofructokinase isozyme (PFK-L2) and the muscle phosphofructokinase isozyme (PFK-M) are dependent on the developmental status of the rat. For example, PFK-L2 and PFK-M are present in fetal and early neonatal skeletal muscle; whereas in adult skeletal muscle, only PFK-M is detectable. By DEAE- cellulose chromatography, PFK-L2 activity was estimated to be 2.4 units/g (41% of total phosphofructokinase activity) in fetal muscle, very low and not resolved from PFK-M in 7-day neonatal muscle, and not detectable in adult muscle. Further, PFK-M activity was found to be 3.4 units/g (59% of total phosphofructokinase activity), 10 units/g, and 31.6 units/g in fetal, 7-day neonatal, and adult skeletal muscle, respectively. The developmental changes of heart phosphofructokinase isozymes differ considerably from that of the skeletal muscle phosphofructokinase isozymes. In fetal heart, PFK-L2 is the major phosphofructokinase isozyme (5.6 units/g), constituting 67% of total phosphofructokinase activity. Further, in fetal heart another phosphofructokinase isozyme (33% of total phosphofructokinase activity) was found by DEAE-cellulose chromatography which is different from PFK-M and PFK-L2. In 7-day neonatal and adult heart, PFK-M and PFK-L2 are the only detectable phosphofructokinase isozymes. Varying from 5.6 units/g (44% of total) in 7-day neonatal to 5.9 units/g (40% of total) in adult heart, PFK-L2 activity remains fairly constant. Also, PFK-M is very low in fetal heart but increases within 1 week postpartum to 5.5 units/g (50% of total activity) and to 8.9 units/g (60% of total activity) in adult heart.  相似文献   

18.
S Vora  R Oskam    G E Staal 《The Biochemical journal》1985,229(2):333-341
In man and the rabbit, 6-phosphofructokinase (PFK, EC 2.7.1.11) exists in tetrameric isoenzymic forms composed of muscle (M or A), liver (L or B) and platelet or brain (P or C) subunits, which are under separate genetic control. In contrast, the genetic control of the rat PFK has not yet been conclusively established; it is unclear whether the P-type or C-type subunit exists in this species. To resolve this question, we investigated the enzyme from the skeletal muscle, liver and brain of rats of Wag/Rij strain. Our studies demonstrate that the rat PFK is also under the control of three structural loci and that the homotetramers M4, P4 and L4 exhibit unique chromatographic, immunological and kinetic-regulatory properties. Skeletal-muscle and brain PFKs consist of isolated M4 and P4 homotetramers respectively. Although liver PFK consists predominantly of L4 homotetramer, it also contains small amounts of PL3 and P2L2 species. All three PFKs exhibit allosteric properties: co-operativity with fructose 6-phosphate and inhibition by ATP decrease in the order P4 greater than L4 greater than M4. P4 and M4 tetramers are the most sensitive to citrate inhibition, whereas L4 tetramer is the least sensitive. More importantly, P4 and L4 isoenzymes are the most sensitive to activation by fructose 2,6-bisphosphate, whereas M4 isoenzyme is the least sensitive. These results indicate that the brain PFK in this strain of rat is a unique tetramer, P4, which also exhibits allosteric kinetics, as do the well-studied M4 and L4 isoenzymes. The reported differences in the number and nature of isoenzymes present in the rat brain and liver most probably reflect the differences in the strains studied by previous investigators. Since the nature of the rat PFK isoenzymes and nomenclatures reported by previous investigators have been now reconciled, it is proposed that, for the sake of uniformity, only well-established nomenclatures used for the rabbit or human PFK isoenzymes be used for the rat isoenzymes.  相似文献   

19.
A procedure was developed for the purification of inorganic pyrophosphate: fructose-6-phosphate 1-phospho-transferase (PPi-PFK) from potato tubers. The enzyme has the structure alpha 4 beta 4 with a subunit of 68 kDa and a beta subunit of 60 kDa. The structural relationship of this enzyme to other PFKs and to fructose bisphosphatase was examined by immunoprecipitation and immunoblotting. Antibodies to the plant enzyme did not react with E. coli PFK. No cross-reaction was seen among the following enzymes or their antibodies: yeast fructose bisphosphatase; rabbit PFKs A, B, or the enzyme from brain; and the two subunits of the potato PPi-PFK. On the other hand, antibody to E. coli PFK-1 strongly cross-reacts with the 60 kDa polypeptide but not 68 kDa peptide.  相似文献   

20.
The full-length gene encoding the ADP-dependent phosphofructokinase (PFK) from the euryarchaeal Thermococcus zilligii was cloned, using degenerate primer polymerase chain reaction (PCR) combined with inverse-PCR techniques, and ultimately expressed in Escherichia coli. The expressed enzyme was biochemically characterised and found to be similar to the native enzyme for most properties examined. Sequence database searches suggest that this unique ADP-PFK possesses a limited phylogenetic distribution with homologues being found only in the other euryarchaeta Methanococcus jannaschii, Methanosarcina mazei and closely related members of the order Thermococcales. A phylogenetic analysis suggests that a single ancestral gene diverged to form the glucokinase and PFK lineages of this unique sequence family. Thus, the PFK reaction, one of the defining enzymatic activities of the Embden-Meyerhof pathway, can now be represented by three separate sequence families, the well-known PFKA family exemplified by the primary E. coli ATP-PFK (E.C. 2.7.1.11) and its associated ATP- and pyrophosphate-dependent PFKs (EC.2.7.1.90), the PFKB family (E. coli PFK 2 encoded by the pfkB gene and its homologues) and the ADP-PFKs of the Euryarchaeota reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号