首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic peptides of proteolipid protein (PLP) were screened for their ability to induce experimental autoimmune encephalomyelitis (EAE) in SJL/J, PL/J, and (SJL x PL)F1 mice, and T cell lines were selected by stimulation of lymph node cells with PLP peptides. PLP 141-151 was found to be less encephalitogenic in SJL/J mice than PLP 139-151, due to deletion of two amino acids from the amino-terminal end. PLP 139-151 immunization induced relapsing EAE in SJL/J and F1 mice but not PL/J mice. In contrast, PLP 43-64 induced relapsing EAE in PL/J and F1 mice but not SJL/J mice. F1 T cell lines specific for either PLP 43-64 or PLP 139-151 adoptively transferred demyelinating EAE to naive F1 recipients. Haplotypes H-2s and H-2u appear to be immunologically co-dominant in F1 mice in the PLP EAE system, which differs from the H-2u dominance in F1 mice in the myelin basic protein EAE system. The identification of a PLP peptide that is encephalitogenic in PL/J mice, in addition to the previous demonstration of PLP peptides that are encephalitogenic for SWR mice (PLP 103-116) and SJL/J mice (PLP 139-151), lends support to a role for PLP as a target Ag in autoimmune demyelinating diseases.  相似文献   

2.
Our previous studies demonstrated that oligomeric recombinant TCR ligands (RTL) can treat clinical signs of experimental autoimmune encephalomyelitis (EAE) and induce long-term T cell tolerance against encephalitogenic peptides. In the current study, we produced a monomeric I-A(s)/PLP 139-151 peptide construct (RTL401) suitable for use in SJL/J mice that develop relapsing disease after injection of PLP 139-151 peptide in CFA. RTL401 given i.v. or s.c. but not empty RTL400 or free PLP 139-151 peptide prevented relapses and significantly reduced clinical severity of EAE induced by PLP 139-151 peptide in SJL/J or (C57BL/6 x SJL)F(1) mice, but did not inhibit EAE induced by PLP 178-191 or MBP 84-104 peptides in SJL/J mice, or MOG 35-55 peptide in (C57BL/6 x SJL/J)F(1) mice. RTL treatment of EAE caused stable or enhanced T cell proliferation and secretion of IL-10 in the periphery, but reduced secretion of inflammatory cytokines and chemokines. In CNS, there was a modest reduction of inflammatory cells, reduced expression of very late activation Ag-4, lymphocyte function-associated Ag-1, and inflammatory cytokines, chemokines, and chemokine receptors, but enhanced expression of Th2-related factors, IL-10, TGF-beta3, and CCR3. These results suggest that monomeric RTL therapy induces a cytokine switch that curbs the encephalitogenic potential of PLP 139-151-specific T cells without fully preventing their entry into CNS, wherein they reduce the severity of inflammation. This mechanism differs from that observed using oligomeric RTL therapy in other EAE models. These results strongly support the clinical application of this novel class of peptide/MHC class II constructs in patients with multiple sclerosis who have focused T cell responses to known encephalitogenic myelin peptides.  相似文献   

3.
Relapsing experimental autoimmune encephalomyelitis (R-EAE) is a CD4+ T cell-mediated demyelinating disease model for multiple sclerosis. Myelin destruction during the initial relapsing phase of R-EAE in SJL mice initiated by immunization with the proteolipid protein (PLP) epitope PLP139-151 is associated with activation of T cells specific for the endogenous, non-cross-reactive PLP178-191 epitope (intramolecular epitope spreading), while relapses in R-EAE induced with the myelin basic protein (MBP) epitope MBP84-104 are associated with PLP139-151-specific responses (intermolecular epitope spreading). Here, we demonstrate that T cells specific for endogenous myelin epitopes play the major pathologic role in mediating clinical relapses. T cells specific for relapse-associated epitopes can serially transfer disease to naive recipients and are demonstrable in the CNS of mice with chronic R-EAE. More importantly, induction of myelin-specific tolerance to relapse-associated epitopes, by i.v. injection of ethylene carbodiimide-fixed peptide-pulsed APCs, either before disease initiation or during remission from acute disease effectively blocks the expression of the initial disease relapse. Further, blockade of B7-1-mediated costimulation with anti-B7-1 F(ab) during disease remission from acute PLP139-151-induced disease prevents clinical relapses by inhibiting activation of PLP178-191-specific T cells. The protective effects of anti-B7-1 F(ab) treatment are long-lasting and highly effective even when administered following the initial relapsing episode wherein spreading to a MBP epitope (MBP84-104) is inhibited. Collectively, these data indicate that epitope spreading is B7-1 dependent, plays a major pathologic role in disease progression, and follows a hierarchical order associated with the relative encephalitogenic dominance of the myelin epitopes (PLP139-151 > PLP178-191 > MBP84-104).  相似文献   

4.
Chronic progression of two T cell-mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139-151-specific T cells in SJL mice undergoing PLP178-191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178-191-induced R-EAE shows that only F4/80-CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139-151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139-151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.  相似文献   

5.
Multiple Ag peptides (MAPs) containing eight proteolipid protein (PLP)(139-151) peptides arranged around a dendrimeric branched lysine core were used to influence the expression and development of relapsing experimental allergic encephalomyelitis (EAE) in SJL mice. The PLP(139-151) MAPs were very efficient agents in preventing the development of clinical disease when administered after immunization with the PLP(139-151) monomeric encephalitogenic peptide in CFA. The treatment effect with these MAPs was peptide specific; irrelevant multimeric peptides such as guinea pig myelin basic protein GPBP(72-84) MAP (a dendrimeric octamer composed of the 72-84 peptide) and PLP(178-191) MAP (a dendrimeric octamer composed of the PLP(178-191) peptide) had no treatment effect on PLP(139-151)-induced EAE. PLP(139-151) MAP treatment initiated after clinical signs of paralysis also altered the subsequent course of EAE; it limited developing signs of paralysis and effectively limited the severity and number of disease relapses in MAP-treated mice over a 60-day observation period. PLP(139-151) MAP therapy initiated before disease onset acts to limit the numbers of Th17 and IFN-gamma-producing cells that enter into the CNS. However, Foxp3(+) cells entered the CNS in numbers equivalent for nontreated and PLP(139-151) MAP-treated animals. The net effect of PLP(139-151) MAP treatment dramatically increases the ratio of Foxp3(+) cells to Th17 and IFN-gamma-producing cells in the CNS of PLP(139-151) MAP-treated animals.  相似文献   

6.
PLP is the major protein constituent of central nervous system myelin. We have previously shown that SJL/J (H-2s) mice develop an acute form of EAE after immunization with PLP. The purpose of the present study was to identify an encephalitogenic determinant of PLP for SJL mice. We immunized SJL/J mice with a synthetic peptide identical to residues 130-147 QAHSLERVCHCLGKWLGH of murine PLP, a sequence having an amphipathic alpha-helical conformation. Although it did not induce disease, an overlapping peptide containing residues 139-154 HCLGKWLGHPDKFVGI was encephalitogenic. Immunization with this peptide induced severe clinical and histologic EAE in 3 of 20 mice. T cell enriched ILN cells from these mice responded specifically (3H-thymidine incorporation) to this peptide as well as to shorter analogues of this domain containing serine in place of cysteine at residues 138 and 140. Immunization with the serine-substituted PLP peptides 137-151 VSHSLGKWLGHPDKF and 139-151 HSLGKWLGHPDKF induced severe, acute EAE in 4 of 9 and 15 of 15 SJL mice, respectively, and their T cell enriched ILN cells responded not only to the analogues, but also to the native PLP sequence 139-154. These results indicate that residues 139-151 of murine PLP is an encephalitogenic determinant for SJL mice. Furthermore, like the PLP encephalitogenic domain for SWR (H-2q) mice, this determinant is also a T cell epitope with a coding sequence at the end of an exon.  相似文献   

7.
To determine if the Ag that induces an autoimmune disease influences parental MHC haplotype molecule expression in situ in MHC heterozygotes, acute experimental allergic encephalomyelitis (EAE) was induced with different encephalitogenic peptides in (SJL/J x SWR)F1 mice. The mice were sensitized with either a synthetic peptide corresponding to mouse myelin proteolipid protein (PLP) residues 103-116 YKTTICGKGLSATV which induces EAE in SWR (H-2q), but not SJL/J (H-2s) mice or a synthetic peptide corresponding to PLP residues 139-151 HCLGKWLGHPDKF which is encephalitogenic in SJL/J but not SWR mice. Mice were killed when they were moribund or at 30 days after sensitization. Twelve of 18 F1 mice given PLP peptide 103-116 and 12 of 17 mice given PLP peptide 139-151 developed EAE within 2 to 3 wk after sensitization. Cryostat sections of brain samples from F1 and parental mice were immunostained with a panel of mAb identifying H-2s and H-2q class I and II MHC molecules. In brains of controls, class I MHC molecules were expressed on choroid plexus, endothelial cells, and microglia whereas class II MHC molecules were absent. In EAE lesions, class I and II MHC molecules were present on inflammatory and parenchymal cells, but the degree of parental haplotype molecule expression did not vary with the different peptide Ag tested. Thus, in (SJL/J x SWR)F1 mice, myelin PLP peptides 103-116 and 139-151 are co-dominant Ag with respect to clinical and histologic disease and parental haplotype MHC molecule expression. We propose a unifying hypothesis consistent with these results and previous observations of differential Ia expression in (responder x non-responder)F1 guinea pigs. We suggest that MHC molecules may bind locally derived peptide Ag in inflammatory sites and that these interactions influence levels of MHC haplotype molecules on APC.  相似文献   

8.
PLP 139-151(S) is the major encephalitogenic epitope of PLP in the SJL/J mouse. CD4+ T cells specific for PLP 139-151(S) induce a relapsing-remitting form of EAE which is similar to the human demyelinating disease MS in both clinical course and histopathology. We are interested in events involved in activation of autoreactive T cells and how to specifically regulate these immune response to both prevent and treat ongoing demyelinating disease. In the current study, we examined the effect of both amino acid substitutions and deletions in the native PLP 139-151(S) peptide to identify which residues are critical for immunogenicity and encephalitogenicity. Conservative and nonconservative substitutions at position 145 diminished or completely destroyed the encephalitogenic potential of the peptide without affecting the ability to recall a proliferative response in lymph node T cells primed with the native PLP 139-151(S) peptide indicating an interesting dichotomy between ability to induce T cell proliferation and ability to induce active clinical disease. In addition, tryptophan at position 144 was identified as a critical TCR contact site as a peptide containing an alanine for tryptophan at this position (A144) primed a unique population of T cells which did not cross react with the native PLP 139-151(S). In addition, A144 was unable to stimulate PLP 139-151(S)-specific T cells in vitro or to induce active relapsing EAE in vivo. The significance of these results to the potential development of new strategies for preventing and treating T cell-mediated autoimmune diseases is discussed.Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

9.
We previously described a synthetic peptide of myelin proteolipid protein (PLP), peptide 139-151, which induces experimental allergic encephalomyelitis in SJL/J (H-2s) mice. We have now identified an additional determinant, PLP residues 178-191, that is also a potent encephalitogen in this strain. When PLP peptide 178-191 was compared with peptide 139-151 on an equimolar basis, the day of onset of disease induced by PLP 178-191 was earlier, but the incidence, severity, and histologic features were indistinguishable. Lymph node cells from animals immunized with the whole PLP molecule responded to both PLP 178-191 and 139-151, suggesting immunologic codominance of the two epitopes. PLP 178-191 elicited stronger proliferative responses and this may relate to the earlier onset of disease induced with this peptide. Two CD4+, peptide-specific, I-A(s)-restricted T cell lines, selected by stimulation of lymph node cells with either PLP 178-191 or 139-151, were each encephalitogenic in naive syngeneic mice. The presence of multiple encephalitogenic codominant PLP epitopes within a single mouse strain emphasizes the complexity of the immune response to PLP and its potential as a target Ag in autoimmune demyelinating diseases.  相似文献   

10.
Proteolipid protein (PLP) is the major protein of central nervous system myelin. SJL (H-2s) mice immunized with a synthetic peptide corresponding to PLP residues 139-151 develop acute EAE. In this study, 6 IAs-restricted, CD4+, TCR alpha beta-bearing T cell clones were derived from SJL/J mice after immunization with this synthetic peptide. The clones responded in in vitro proliferative assays to the whole PLP molecule and to PLP peptide 139-151, but not to irrelevant Ag. They also responded to truncated and overlapping forms of the peptide but five distinct reactivity patterns were observed using these peptides. A panel of anti-TCR V beta mAb and TCR V beta-specific cDNA probes were used to determine the TCR V beta usage of the clones. Five clones were found to use four different V beta (V beta 2, V beta 6, V beta 10, or V beta 17a), whereas the V beta on the sixth clone could not be identified. Five of the clones induced EAE of varying severity upon adoptive transfer into naive syngeneic mice or mice pretreated with irradiation and pertussis and one clone was nonencephalitogenic. The Ag-specific proliferative response of all but the nonencephalitogenic clone could be blocked by an anti-CD4 mAb. Thus, the clones showed differences in their fine specifity, TCR V beta usage, sensitivity to antibody blocking, and encephalitogenic potency. These data demonstrate that the T cell response to the encephalitogenic PLP peptide 139-151 is heterogeneous.  相似文献   

11.
We have previously shown that naive SJL (H-2(s)) mice, which are highly susceptible to myelin proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE), have a very high frequency (1/20,000 CD4 T cells) of PLP(139-151)-reactive T cells in the naive repertoire. In this study, we examine the function of this endogenous PLP(139-151)-reactive repertoire in vivo and find that this repertoire encompasses the precursors of pathogenic T cells. Because SJL mice do not develop spontaneous EAE, we have explored the mechanisms that keep this autopathogenic repertoire in check and prevent the development of spontaneous autoimmunity. We crossed IL-4 and IL-10 deficiency onto the SJL background and analyzed the roles of these two immunoregulatory cytokines in regulating the size and effector function of the endogenous PLP(139-151)-reactive repertoire and development of autoimmune disease. We find that IL-10 is important in the homeostatic regulation of the endogenous PLP(139-151)-reactive repertoire in that it both limits the size of the repertoire and prevents development of effector autoaggressive T cells. SJL IL-10(-/-) mice with high numbers of PLP(139-151)-specific precursors in the repertoire did not develop spontaneous EAE, but when they were injected with pertussis toxin, they showed atypical clinical signs of EAE with small numbers of typical mononuclear cell infiltrates predominantly in the meninges. EAE could be inhibited by prior tolerization of the mice with soluble PLP(139-151) peptide. These findings indicate that IL-10 may contribute to the regulation of the endogenous autoimmune repertoire.  相似文献   

12.
目的探讨C57BL/6J小鼠建立实验性自身免疫性脑脊髓炎(EAE)模型的可能性及其发病特点。方法使用PLP139-151抗原及其C57BL/6J小鼠自制脑脊髓匀浆(spinal cord homogenate,SCH)免疫C57BL/6J小鼠,使用完全福(氏)免疫佐剂为免疫佐剂,并在尾静脉注射百日咳杆菌,建立EAE模型,与经典的PLP139-151免疫的SJL/J小鼠EAE模型进行对比。结果PLP139-151免疫C57BL/6J小鼠仅有一只小鼠表现为尾部张力明显降低;自制SCH免疫C57BL/6J小鼠可见明显脱髓鞘改变。与PLP139-151免疫SJL/J小鼠组相比发病率较低(P〈0.05),神经功能评分比较没有明显差异(P〉0.05),但发病时间长于PLP139-151免疫SJL/J小鼠组(P〈0.05)。结论SCH免疫C57BL/6J小鼠的EAE动物模型,主要表现为急性单相病程,从临床表现和病理学特点来看符合人类MS的病理特点,值得在以后的研究中进一步研究探讨。  相似文献   

13.
Tolerization of SJL/J mice with splenocytes coupled with proteolipid protein (PLP), the major protein component of central nervous system myelin, resulted in dramatic inhibition of relapsing experimental autoimmune encephalomyelitis (R-EAE) induced by mouse spinal cord homogenate (MSCH). Mice tolerized with splenocytes coupled with MSCH (a complex mixture of neuroantigens) or with purified PLP, but not purified myelin basic protein, were resistant to the development of clinical and histologic R-EAE. In addition, mice rendered tolerant to an encephalitogenic peptide of PLP were significantly protected, whereas mice tolerized to a nonencephalitogenic peptide of PLP were highly susceptible, to the induction of MSCH-induced R-EAE. Thus, immune responses directed against encephalitogenic regions of PLP appear to play a major role in the development of R-EAE induced by MSCH in SJL/J mice. These results also indicate that determinant-specific immune tolerance is a feasible approach to the regulation of a disease that involves autoimmune responses to a variety of Ag.  相似文献   

14.
Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic progressive, CD4(+) T cell-mediated demyelinating disease. Myelin damage is initiated by T cell responses to virus persisting in CNS APCs, and progressive demyelinating disease (50 days postinfection) is perpetuated by myelin epitope-specific CD4(+) T cells activated by epitope spreading. We developed an infectious model of molecular mimicry by inserting a sequence encompassing the immunodominant myelin epitope, proteolipid protein (PLP) 139-151, into the coding region of a nonpathogenic TMEV variant. PLP139-TMEV-infected mice developed a rapid onset paralytic inflammatory, demyelinating disease paralleled by the activation of PLP139-151-specific CD4(+) Th1 responses within 10-14 days postinfection. The current studies demonstrate that the early onset demyelinating disease induced by PLP139-TMEV is the direct result of autoreactive PLP139-151-specific CD4(+) T cell responses. PLP139-151-specific CD4(+) T cells from PLP139-TMEV-infected mice transferred demyelinating disease to naive recipients and PLP139-151-specific tolerance before infection prevented clinical disease. Finally, infection with the mimic virus at sites peripheral to the CNS induced early demyelinating disease, suggesting that the PLP139-151-specific CD4(+) T cells could be activated in the periphery and traffic to the CNS. Collectively, infection with PLP139-151 mimic encoding TMEV serves as an excellent model for molecular mimicry by inducing pathologic myelin-specific CD4(+) T cells via a natural virus infection.  相似文献   

15.
Programmed death-1 (PD-1) is a negative costimulatory molecule, and blocking the interaction of PD-1 with its ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC), enhances autoimmune disease in several animal models. We have studied the role of PD-1 ligands in disease susceptibility and chronic progression in experimental autoimmune encephalomyelitis (EAE). In BALB/c mice immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, PD-L1 but not PD-L2 blockade significantly increased EAE incidence. In B10.S mice immunized with myelin proteolipid protein (PLP) peptide 139-151, both PD-L1 and PD-L2 blockade markedly enhanced EAE severity. In prediabetic NOD mice immunized with PLP48-70, PD-L2 blockade worsened EAE but did not induce diabetes, whereas PD-L1 blockade precipitated diabetes but did not worsen EAE, suggesting different regulatory roles of these two ligands in EAE and diabetes. B6 mice immunized with MOG35-55 developed chronic persistent EAE, and PD-L2 blockade in the chronic phase exacerbated EAE, whereas PD-L1 blockade did not. In contrast, SJL/J mice immunized with PLP139-151 developed chronic relapsing-remitting EAE, and only PD-L1 blockade during remission precipitated EAE relapse. The strain-specific effects of PD-1 ligand blockade did not correlate with the expression of PD-L1 and PD-L2 on dendritic cells and macrophages in lymphoid tissue, or on inflammatory cells in the CNS. However, EAE enhancement is correlated with less prominent Th2 cytokine induction after specific PD-1 ligand blockade. In conclusion, PD-L1 and PD-L2 differentially regulate the susceptibility and chronic progression of EAE in a strain-specific manner.  相似文献   

16.
Heat shock proteins (Hsp) are markedly up-regulated at sites of inflammation during autoimmune diseases like experimental autoimmune encephalomyelitis (EAE). In this study, we show that Hsp70-peptide complexes (pc) isolated from brains of mice with EAE prevented the development of EAE clinically and pathologically when administered before proteolipid protein 139-151 (PLP139-151) immunization. In contrast, pure Hsp70 or Hsp70-pc derived from brains of healthy mice or other inflamed tissue did not modulate the expression of EAE. In animals in which EAE had been suppressed by Hsp70-pc, lymphocytes showed increased cell death in response to PLP139-151 that correlated with elevated IFN-gamma and NO production. Coculture of spleen cells from Hsp70-pc immunized mice with spleen cells from untreated EAE mice, in addition to depletion experiments, showed that NK cells reduced reactivity to PLP139-151. Transfer of NK cells from Hsp70-pc-immunized mice to recipients sensitized for EAE abolished disease development. Thus, we propose that Hsp70 demonstrate the ability to bind to peptides generated during brain inflammation and to induce a regulatory NK cell population that is capable of preventing subsequent autoimmunization for EAE.  相似文献   

17.
To date, very few Ag-based regimens have been defined that could expand T regulatory (Treg) cells to reverse autoimmunity. Additional understanding of Treg function with respect to specificity and broad suppression should help overcome these limitations. Ig-proteolipid protein (PLP)1, an Ig carrying a PLP1 peptide corresponding to amino acid residues 139-151 of PLP, displayed potent tolerogenic functions and proved effective against experimental allergic encephalomyelitis (EAE). In this study, we took advantage of the Ig-PLP1 system and the PLP1-specific TCR transgenic 5B6 mouse to define a regimen that could expand Ag-specific Treg cells in vivo and tested for effectiveness against autoimmunity involving diverse T cell specificities. The findings indicate that in vivo exposure to aggregated Ig-PLP1 drives PLP1-specific 5B6 TCR transgenic cells to evolve as Treg cells expressing CD25, CTLA-4, and Foxp3 and producing IL-10. These Treg cells were able to suppress PLP1 peptide-induced EAE in both SJL/J and F(1) (SJL/J x C57BL/6) mice. However, despite being effective against disease induced with a CNS homogenate, the Treg cells were unable to counter EAE induced by a myelin basic protein or a myelin oligodendrocyte glycoprotein peptide. Nevertheless, activation with Ag before transfer into the host mice supports suppression of both myelin oligodendrocyte glycoprotein- and myelin basic protein peptide-induced EAE. Thus, it is suggested that activation of Treg cells by the cognate autoantigen is necessary for operation of broad suppressive functions.  相似文献   

18.
Murine experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated autoimmune disorder directed against myelin proteins within the CNS. We propose that variant peptides containing amino acid substitutions at MHC anchor residues will provide a unique means to controlling the polyclonal autoimmune T cell response. In this study, we have identified an MHC variant of proteolipid protein (PLP) 139-151 (145D) that renders PLP(139-151)-specific T cell lines anergic in vitro, as defined by a significant reduction in proliferation and IL-2 production following challenge with wild-type peptide. In vivo administration of 145D before challenge with PLP(139-151) results in a significant reduction in disease severity and incidence. Importantly, we demonstrate the ability of an MHC variant peptide to ameliorate established EAE. An advantage to this treatment is that the MHC variant peptide does not induce an acute hypersensitivity reaction. This is in contrast to previous work in the PLP(139-151) model demonstrating that anaphylactic shock resulting in death occurs upon rechallenge with the encephalitogenic peptide. Taken together, these data demonstrate the effectiveness of MHC anchor-substituted peptides in the treatment of EAE and suggest their utility in the treatment of other autoimmune disorders.  相似文献   

19.
This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers+ cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IAs/PLP 139-151 dextramers (specific)/anti-CD4 and IAs/Theiler’s murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IAk/Myhc 334-352 dextramers/anti-CD4 and IAk/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer+ cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the ‘Z’ serial images.  相似文献   

20.
Experimental autoimmune encephalomyelitis (EAE) is induced in the SJL/J mouse by adoptive transfer of activated proteolipid protein peptide (PLP) 139-151-specific Th1 cells. T cells responding to altered peptide ligands (APL) of PLP, previously shown to induce Th2 differentiation and regulate disease in PLP-immunized mice, do not transfer EAE. However, the exact mechanism of disease regulation by APL-specific T cells has not been elucidated. In this report, we show that 1F1, a Th2 clone specific for an APL of PLP139-151 can prevent adoptive transfer of EAE when cocultured with PLP-encephalitogenic spleen cells (PLP-spleen). Cytokines from activated 1F1 cells were detected by hybridization of mRNA to oligonucleotide arrays (DNA chip) and by ELISA. The Th2 cytokines found to be present at the highest protein and mRNA levels were evaluated for their role in suppression of adoptive transfer of EAE from PLP-activated spleen cell cultures. Abs to individual cytokines in 1F1 PLP-spleen cocultures suggested that IL-4, IL-13, and TGF-beta played a significant role in suppressing EAE. Abs to the combination of IL-4, IL-10, IL-13, and TGF-beta completely neutralized the protective effect of 1F1. Addition of Th2 cytokines to PLP-spleen cultures showed that IL-13 and TGF-beta were each individually effective and low levels of IL-4 synergized with IL-13 to inhibit disease transfer. IL-5, IL-9, and IL-10 had little or no effect whereas GM-CSF slightly enhanced EAE. Our results demonstrate that Th2 cytokines derived from APL-specific Th2 cells can effectively down-regulate the encephalitogenic potential of PLP-spleen cells if present during their reactivation in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号