首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects on the linoleic acid metabolism in vivo of three dietary fats, rich in either oleic acid, trans fatty acids or alpha-linolenic acid, and all with the same linoleic acid content, were investigated in male Wistar rats. After 6 weeks of feeding, the rats were intubated with [1-14C]linoleic acid and [3H]oleic acid. The incorporation of these radiolabels into liver, heart and serum was investigated 2, 4, 8, 24 and 48 h after intubation. The amount of 14C-labelled arachidonic acid incorporated into the liver phospholipid of the group fed the oleic acid-rich diet was significantly higher than that of the other groups. However, compared to the trans fatty acids-containing diet, the oleic acid-rich diet induced only a slightly higher arachidonic acid level in the phospholipid fraction of the tissues as determined by GLC. Dietary alpha-linolenic acid more than halved the arachidonic acid levels. Our results do not support the hypothesis that the delta 6-desaturase system actually determines the polyunsaturated fatty acid levels in tissue lipids by regulating the amount of polyunsaturated fatty acids (e.g., arachidonic acid) synthesized. The biosynthesis of polyunsaturated fatty acids only is not sufficient to explain the complicated changes in fatty acid compositions as observed after feeding different dietary fats.  相似文献   

2.
1. Fatty acid patterns of liver and plasma triglycerides, phospholipids and cholesteryl esters were determined at intervals during 24hr. after essential fatty acid-deficient rats were given one feeding of linoleate (as safflower oil). 2. Liver triglyceride, phospholipid and cholesteryl ester fatty acid compositions did not change up to 7hr. after feeding. Between 7 and 10hr., linoleic acid began to increase in all fractions, but arachidonic acid did not begin to rise in the phospholipid until 14-19hr. after feeding. 3. Oleic acid and eicosatrienoic acid in liver phospholipid began to decline at about the time that linoleic acid increased, i.e. about 9hr. before arachidonic acid began to increase. 4. Changes in linoleic acid, arachidonic acid and eicosatrienoic acid in phosphatidylcholine resembled those of the total phospholipid. Phosphatidylethanolamine had a higher percentage content of arachidonic acid before the linoleate was given than did phosphatidylcholine, and after the linoleate was given the fatty acid composition of this fraction was little changed. 5. The behaviour of the plasma lipid fatty acids was similar to that of the liver lipids, with changes in linoleic acid, eicosatrienoic acid and arachidonic acid appearing at the same times as they occurred in the liver. 6. The results indicated that linoleic acid was preferentially incorporated into the liver phospholipid at the expense of eicosatrienoic acid and oleic acid. The decline in these fatty acids apparently resulted from their competition with linoleic acid for available sites in the phospholipids rather than from any direct replacement by arachidonic acid.  相似文献   

3.
We investigated the changes in adiposity, cardiovascular and liver structure and function, and tissue fatty acid compositions in response to oleic acid-rich macadamia oil, linoleic acid-rich safflower oil and α-linolenic acid-rich flaxseed oil (C18 unsaturated fatty acids) in rats fed either a diet high in simple sugars and mainly saturated fats or a diet high in polysaccharides (cornstarch) and low in fat. The fatty acids induced lipid redistribution away from the abdomen, more pronounced with increasing unsaturation; only oleic acid increased whole-body adiposity. Oleic acid decreased plasma total cholesterol without changing triglycerides and nonesterified fatty acids, whereas linoleic and α-linolenic acids decreased plasma triglycerides and nonesterified fatty acids but not cholesterol. α-Linolenic acid improved left ventricular structure and function, diastolic stiffness and systolic blood pressure. Neither oleic nor linoleic acid changed the left ventricular remodeling induced by high-carbohydrate, high-fat diet, but both induced dilation of the left ventricle and functional deterioration in low fat-diet-fed rats. α-Linolenic acid improved glucose tolerance, while oleic and linoleic acids increased basal plasma glucose concentrations. Oleic and α-linolenic acids, but not linoleic acid, normalized systolic blood pressure. Only oleic acid reduced plasma markers of liver damage. The C18 unsaturated fatty acids reduced trans fatty acids in the heart, liver and skeletal muscle with lowered stearoyl-CoA desaturase-1 activity index; linoleic and α-linolenic acids increased accumulation of their C22 elongated products. These results demonstrate different physiological and biochemical responses to primary C18 unsaturated fatty acids in a rat model of human metabolic syndrome.  相似文献   

4.
Abstract— The contents and the fatty acid composition of cholesterol esters were analysed in developing rat brain. The total content did not exceed 20 μg/brain throughout development. Elimination of serum by adequate perfusion was essential for accurate results. Two separate events appeared to affect the levels of cholesterol esters in developing rat brain, one probably reflecting general developmental changes and the other apparently related to myelination. On either a unit weight or a whole brain basis, the curves appeared to be a superimposition of the two events. There was an underlying developmental change, which was characterized on a unit weight basis by the highest level of cholesterol esters immediately after birth and a steady decline to the adult level by 30 days of age or which on the basis of whole brain was characterized by a steady increase throughout the development. A period of transient increase was superimposed on this underlying developmental change between the ages of 7 and 27 days and corresponded to the period of active myelination. The major fatty acids of rat brain cholesterol esters were palmitic, palmitoleic, oleic and arachidonic acids. Palmitic and palmitoleic acids decreased in proportion while oleic acid increased, as the animal matured. The fatty acid composition of serum cholesterol esters was distinctly different from that of brain cholesterol esters; those from serum contained much higher proportions of linoleic and arachidonic acids and much less palmitoleic and oleic acids.  相似文献   

5.
The interaction of dietary fats and proteins on lipid parameters of rats was studied using safflower oil (linoleic acid-rich), borage oil (gamma-linolenic acid-rich) or perilla oil (alpha-linolenic acid-rich) in combination with casein or soybean protein. The experiment was focused on the fatty acid composition of immune cells and the leukotriene B4 production by peritoneal exudate cells. Serum total cholesterol, triglyceride, and phospholipid levels were low in perilla oil-fed or soybean protein-fed rats. Fatty acid compositions of serum and liver phospholipids reflected those of dietary fats. However, feeding borage oil resulted in a marked increase in the proportion of dihomo-gamma-linolenic acid in phospholipids of peritoneal exudate cells, spleen lymphocytes, and mesenteric lymph node lymphocytes in relation to those of liver and serum. It is suggested that activities of metabolic n-6 polyunsaturated fatty acids are different between immune and other tissues. In addition, the magnitude of the reduction of the proportion of linoleic acid of perilla oil in immune cells was considerably more moderate than serum and liver, indicating a different degree of interference of alpha-linolenic acid with linoleic acid metabolism. Leukotriene release from peritoneal exudate cells was in the order of safflower oil > borage oil > perilla oil groups as reflecting the proportion of arachidonic acid, and tended to be lower in soybean protein-fed groups. These suggest an anti-inflammatory property of gamma-linolenic acid as well as alpha-linolenic acid tended to be strengthened when they were combined with soybean protein than with casein.  相似文献   

6.
Pregnant Wistar rats were fed a fatfree diet from day 16--22 of pregnancy. On day 22, the fatty acid components of cholesterol esters, triglycerides, free fatty acids and phospholipids of maternal (brain, muscle, serum, white adipose tissue, liver) and fetal (brain, carcass, serum, liver) tissues, including the placenta, were examined gaschromatographically for the participation of linoleic and arachidonic acid. In all fetal and maternal organs the linoleic acid levels in the fatty acid patterns were strongly reduced. The alterations nearly always involved all the lipid fractions of a tissue and were mostly equal within a tissue. The strongest decreases of linoleic acid occurred in the placenta, and the weakest, in the lipids of maternal muscle and maternal adipose tissue. The linoleic acid alterations were principally similar in fetal and the corresponding maternal tissues, while being less pronounced in case of maternal muscle. The participation of arachidonic acid in the fatty acid pattern is completely retained in the lipids of fetal organs, and is even enhanced in those of the placenta.  相似文献   

7.
1. Changes produced by a cholesterol-biosynthesis inhibitor, trans-1,4-bis-(2-chlorobenzylaminomethyl)cyclohexane dihydrochloride (AY-9944), in the total fatty acids in the liver and brain, and in phospholipids in the serum, liver, heart, brain and lungs from male rats, have been studied. 2. Treatment with AY-9944 produced the following changes in the fatty acid composition: (a) a marked decrease in the percentage of linoleic acid and an increase in oleic acid in the total fatty acids in the liver; (b) in the serum, an overall decrease in the percentage of linoleic acid in neutral lipids and phospholipids; (c) an increased content of linoleic acid in the beta-acyl chain of phosphatidylcholines in the liver and in sphingomyelins in the brain and lungs; (d) an increased content of palmitic acid and oleic acid in the beta-acyl chain of phosphatidylcholine in the liver, heart and lungs; (e) an increased content of phosphatidylcholines and sphingomyelins, together with an increased percentage of saturated fatty acids in these phosphatides in the lungs. 3. Changes in the phosphatides and the production of foam cells in the lungs suggest that AY-9944 may be of use in the study of the alveolar membrane.  相似文献   

8.
The salient feature of the fatty acid profile of kestrel eggs collected in the wild was the very high proportion of arachidonic acid (15.2%+/-0.7% of fatty acid mass, n=5) in the phospholipid fraction of the yolk. Kestrels in captivity fed on day-old chickens produced eggs that differed from those of the wild birds in a number of compositional features: the proportion of linoleic acid was increased in all the lipid fractions; the proportion of arachidonic acid was increased in yolk phospholipid and cholesteryl ester; the proportion of alpha-linolenic acid was decreased in all lipid classes, and that of docosahexaenoic acid was decreased in phospholipid and cholesteryl ester. Partridge eggs from the wild contained linoleic acid as the main polyunsaturate of all the yolk lipid fractions. Captive partridges maintained on a formulated diet very rich in linoleic acid produced eggs with increased levels of linoleic, arachidonic, and n-6 docosapentaenoic acids in the phospholipid fraction; reduced proportions of alpha-linolenic acid were observed in all lipid classes, and the proportion of docosahexaenoic acid was markedly reduced in the phospholipid fraction. Thus, captive breeding of both the kestrel and the partridge increases the n-6/n-3 polyunsaturate ratio of the yolk lipids.  相似文献   

9.
The lipid compositions of whole brain homogenates and microsomal and myelin fractions isolated from the brains of 6-month-old rats raised on a lab chow diet, a fatty acid-deficient diet, and a deficient diet supplemented with 5% (w/w) corn oil were determined. Brain and body weights were significantly lower in the fatty acid-deficient group. The compositions of alk-1-enyl groups and phospholipids of whole brain homogenates of rats maintained on the three diets were not different. However, marked alterations were found in the acyl group compositions of the major phosphoglycerides from whole brain homogenates and from the myelin and microsomal fractions of rats maintained on the fatty acid-deficient diet. With the deficient diet, 20:3(n - 9) was found in the major phosphoglycerides as well as in the myelin and microsomal fractions. In addition, the levels of 20:4(n - 6) and 22:4(n - 6) were decreased. The levels of 20:4(n - 6), 22:4(n - 6), and 22:5(n - 6) were higher in the brain phosphoglycerides of rats maintained on the corn oil-supplemented diet than on the lab chow control diet, and the elevation in these acyl groups was more evident in the microsomal fraction than in the myelin fraction.  相似文献   

10.
Isolated liver cells from rats fed a diet deficient in essential fatty acids were used to study the oxidation, esterification and, especially, the desaturation and chain elongation of [1-14C]linoleic acid. 14C-labelled arachidonic acid (20:4) and smaller amounts of eicosatrienoic acid (20:3) were recovered mainly in the phospholipids, while gamma-linolenic acid (18:3) was found in both the phospholipids and the triacylglycerol fraction. Lactate strongly increased the formation of arachidonic acid, which was found mainly in the phosphatidylcholine and the phosphatidylinositol fractions. Lactate reduced the amounts of gamma-linolenic acid. Glucagon and (+)-decanoylcarnitine reduced the formation of arachidonic acid, and (+)-decanoylcarnitine increased the incorporation of gamma-linolenic acid especially, in the triacylglycerol fraction. Increasing concentrations of the [1-14C]linoleic acid substrate increased the formation of arachidonic acid and of the other chain-elongated or desaturated fatty acids. Lactate also stimulated the formation of arachidonic acid in liver cells from animals fed adequate amounts of essential fatty acids. It is suggested that dietary and hormonal factors which can change the intracellular levels of malonyl-CoA may influence both the ratio of arachidonic acid/gamma-linolenic acid formed and the total amounts of desaturated and chain-elongated fatty acids formed from linoleic acid.  相似文献   

11.
We have evaluated the relative and quantitative changes in long-chain fatty acids in maternal liver, serum, carcass and conceptus (fetuses plus placentae) during pregnancy in the rat, to ascertain whether previous concern over lower proportions of n - 6 and n - 3 fatty acids in maternal serum could be indicative of suboptimal n - 6 or n - 3 fatty acid status. Gestational hyperlipidemia was characterized by proportional decreases in linoleic, stearic and arachidonic acids but increases in palmitic and docosahexaenoic acids. However, the quantitative amount (microgram/ml) of linoleic, arachidonic and docosahexaenoic acids in serum lipids actually increased 2-5-fold from mid-pregnancy to term. Compared to non-pregnant rats, gestational hyperlipidemia was also associated with a lower proportion but similar quantity of linoleic acid in maternal carcass and adipose stores. We conclude that gestational hyperlipidemia in the rat is characterized by a relative but not quantitative decrease in whole-body stores of n - 6 fatty acids and a marked proportional and quantitative increase in docosahexaenoic acid in maternal organs and in the conceptus.  相似文献   

12.
Feeding rodents a diet rich in evening primrose oil (EPO), which contains 5-10 g gamma-linolenic acid (GLA)/100 g total fatty acids, has been shown to decrease lymphocyte proliferation and natural killer cell activity. However, EPO contains a very high level of linoleic acid which itself can affect lymphocyte functions and it is not clear to what extent the effects of EPO can be attributed to GLA. The current study investigated the effect of two levels of GLA in the rat diet upon immune cell functions; the level of linoleic acid was maintained below 30 g/100 g total fatty acids. Weanling rats were fed on high fat (178 g/kg) diets which contained 4.4 g or 10 g GLA/100 g total fatty acids in place of a proportion of linoleic acid. The total polyunsaturated fatty acid content and the n-6 to n-3 polyunsaturated fatty acid ratio of the diet were maintained at 35 g/100 g total fatty acids and 7, respectively. The fatty acid compositions of the serum and of spleen leukocytes were markedly influenced by that of the diet, with an increase in the proportions of GLA and dihomo-gamma-linolenic acid when the diets containing GLA were fed; these diets also increased the proportion of arachidonic acid in spleen leukocytes. Spleen lymphocyte proliferation in response to concanavalin A was significantly reduced (by 60%) by feeding the diet containing the higher level of GLA, but not by the diet containing the lower level of GLA. Spleen natural killer cell activity and prostaglandin E (PGE) production by spleen leukocytes were not significantly affected by inclusion of GLA in the diet, although there was a tendency towards decreased natural killer cell activity by cells from rats fed the high GLA diet. Thus, this study shows that dietary GLA is capable of altering the fatty acid composition of cells of the immune system and of exerting some immunomodulatory effects, but that the level of GLA in the diet must exceed 4.4 g/100 g total fatty acids for these effects to become apparent.  相似文献   

13.
The fatty acid composition of individual glycerolipids in brain and sciatic nerve of rats made diabetic with streptozotocin and sacrificed 8 weeks later was determined and compared to the alterations that occurred in liver and kidney glycerlipids. A substantial decrease in the proportion of arachidonic acid and increases in the relative content of linoleic and docosahexenoic (22∶6n3) acids occurred in the phosphoglycerides of visceral tissues from diabetic animals as reported by others. In contrast, except for a small rise in the percentage of linoleic acid, no consistent changes in fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, ethanolamine plasmalogen, phosphatidylinositol or phosphatidylerrine from brain or nerve were detected. The fatty acids of triacylglycerol associated with nerve exhibited alterations similar to those characteristic of liver. The differences which developed as a result of diabetes were completely prevented if animals were maintained continuously on insulin commencing shortly after administration of streptozotocin. It is concluded that the fatty acid composition of brain and nerve phosphoglycerides are unusually resistant to alteration in the diabetic animal and that consequently, changes in bulk membrane fluidity are unlikely to contribute to functional abnormalities displayed by diabetic peripheral nerve. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

14.
We have studied the effects of diet supplementation with 10% fish oil on fatty acid composition of the main lipid classes of chick plasma lipoproteins bearing in mind the relationship between platelet aggregation and eicosanoid production from arachidonic acid. Fish oil drastically increased the percentages of 20:5 n-3 and 22:6 n-3 acids in the high density lipoprotein lipids. The 20:5/22:6 ratio increased in triacylglycerol fraction whereas in phospholipids and cholesterol esters both 20:5 and 22:6 acids increased in a similar proportion. The percentage of arachidonic acid was higher in phospholipids than in the other lipid classes from this lipoprotein fraction and was significantly reduced by fish oil feeding. Linoleic acid, which was the most abundant fatty acid in cholesterol esters, strongly decreased after fish oil consumption. Changes induced in low- and very low density lipoproteins were similar to that observed in the high density lipoproteins. However, in the very low density lipoproteins, the 20:5/22:6 ratio was not increased in triacylglycerols, in contrast to that found in the high- and low density fractions. Our results suggest that decreases observed by fish oil feeding in the percentages of arachidonic acid in phospholipids and linoleic acid in cholesterol esters in the three lipoprotein fractions may be of importance to explain some pharmacological effects of n-3 PUFA with regard to vascular diseases.  相似文献   

15.
Rat hepatocytes in primary culture were incubated with a mixture of linoleic and arachidonic acid at various total fatty acid/serum albumin molar ratios. Mixed fatty acids were taken up at the same rate and distributed with the same pattern as fatty acids added separately. The rates of total uptake, incorporation into hepatocyte and secreted triacylglycerols and beta-oxidation were linearly related to the fatty acid/albumin ratios, whereas the rate of incorporation into phospholipids was saturable. Neither the uptake rate nor the distribution of both fatty acids considered together varied with the arachidonic acid/linoleic acid molar ratio. Changes in this ratio and in the uptake rate led to significant variations in the respective fate of the fatty acids. The preferential channelling of arachidonic acid versus linoleic acid into beta-oxidation and phosphatidylinositol was greatest at a low uptake rate and then decreased as the uptake rose. Conversely, the preferential channelling of arachidonic acid versus linoleic acid into phosphatidylcholine, but not phosphatidylethanolamine, increased with the uptake rate. Moreover, both arachidonic acid and linoleic acid were preferentially incorporated into the 1-palmitoyl molecular species of phosphatidylcholine and phosphatidylethanolamine at a low uptake rate, and of phosphatidylcholine at a high uptake rate. This could be related to the synthesis of biliary phosphatidylcholine, of which 1-palmitoyl-2-linoleoyl and 1-palmitoyl-2-arachidonoyl are the main molecular species. Linoleic and arachidonic acid were selectively distributed into distinct metabolic pools of triacylglycerol, the intrahepatocyte pool which preferentially incorporated linoleic acid at a low uptake rate and the secreted pool in which the relative enrichment of arachidonic acid increased with the uptake rate. This strengthens the central role of hepatic secretion in the supply of arachidonic acid to peripheral tissues.  相似文献   

16.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

17.
The aim of the present study was to investigate whether unsaturated 2-acyl-lysophosphatidylcholine bound to plasma albumin is a relevant delivery form of unsaturated fatty acids to the developing brain. Twenty-day-old rats were perfused for 30 s with labeled palmitic, oleic, linoleic, and arachidonic acids in either their unesterified form or esterified in 2-acyl-lysophosphatidylcholine labeled on the choline and fatty acid moieties. Both forms were bound to albumin. Incorporation in brain lipid classes was followed within 1 h. The brain uptake of the unesterified fatty acids reached a plateau at 5-15 min and was maximal for arachidonic acid (0.45% of the perfused dose). The brain uptake of palmitoyl-lysophosphatidylcholine was similar to that of palmitic acid, whereas that of other lysophosphatidylcholines increased with the degree of unsaturation (rate and maximal uptake) and was six- to 10-fold higher than that of the corresponding unesterified fatty acid. 2-Acyl-lysophosphatidylcholines were taken up without prior hydrolysis and reacylated into doubly labeled phosphatidylcholine, which was the most labeled lipid class, whereas lipid distribution of the unesterified fatty acid was more diversified. Partial hydrolysis of 2-acyl-lysophosphatidylcholine occurred in the brain tissue, and redistribution of the fatty acyl moiety into other phospholipid classes was also observed and was the highest for arachidonic acid. In this case, the percentage of esterification of this fatty acid in phosphatidylinositol (expressed as a percentage of the total lipid fraction) was relatively lower than that observed when the unesterified form was used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

19.
Apolipoprotein (apo) E-deficient mice were fed an atherogenic diet with either 1% ethyl ester docosahexaenoic acid (DHA) or safflower oil (SO) as a source of linoleic acid for 8 week. Both genders fed DHA had higher proportions of eicosapentaenoic acid and DHA, and lower proportions of linoleic and arachidonic acids in the liver and serum phospholipids than those fed SO. Males fed DHA had greater liver weight and tended to have higher concentrations of serum lipids and liver cholesterol than those fed SO, and there were opposite trends in females. Dietary fats and gender led to no significant effect on lesion sizes in aortic arch and thoracic plus abdominal aorta. These results indicate that the interactive action of sex-related factor(s) with dietary polyunsaturated fatty acids is involved in metabolic changes of serum lipids in apoE-deficient mice, and addition of DHA, compared with addition of SO, is not effective to abolish the atherosclerosis in this animal model.  相似文献   

20.
Variations in the occurrence of prostaglandin precursor fatty acids might be of importance for the pathogenesis of gallstones. Pregnancy and use of contraceptive steroids increase the risk of gallstones. The present study reports the relative fatty acid composition in serum and biliary phospholipids studied by gas-liquid chromatography in four groups of female cats, which were on a standard diet: 1) oophorectomized animals, 2) animals on contraceptive steroids, 3) pregnant animals and 4) control animals. It was consistently found that the portions of palmitic and linoleic acid were higher and stearic and arachidonic acid were lower in biliary than in serum lecithin. In biliary lysolecithin, sphingomyelin and cephaline there were only small portions of linoleic and negligible amounts of arachidonic acid. Oophorectomy, contraceptive steroids or pregnancy did not induce any gross changes in the fatty acid pattern of lecithin in serum or bile. In animals treated with contraceptive steroids a reduced portion of linoleic acid was seen in the bile lecithin, and in pregnant animals there was a reduction of omega 3 and omega 6 fatty acids in biliary lecithin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号